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Supervisor’s Foreword

A grand challenge in modern physics is to understand out-of-equilibrium systems
subject to quantum measurement or an interaction with an environment. With rapid
developments in atomic, molecular and optical (AMO) physics, out-of-equilibrium
quantum physics has attracted increasing attention. In this thesis, Yuto Ashida
combined techniques in quantum optics and condensed matter physics to explore
several fundamental aspects of open quantum physics with special emphasis on
quantum criticality, many-body dynamics, and system-environment entanglement.

Recent advances in AMO experiments have made it possible to manipulate
quantum many-body systems at the single-quantum level. At such high resolution,
Heisenberg’s uncertainty relation places fundamental constraints on observable
quantities through measurement backaction. Here, a crucial question is how the
conventional quantum many-body physics should be altered under such
atomic-level observation. Combining theoretical techniques from quantum optics,
many-body physics, and statistical mechanics, Yuto has demonstrated that quantum
measurement and an interaction with an environment fundamentally alters the
dynamics of a system, giving rise to unique quantum many-body phenomena due to
the nonunitary nature of quantum measurement.

First, Yuto combined the renormalization-group method with the cutting-edge
numerical technique (iTEBD) to extend the Berezinskii-Kosterlitz-Thouless para-
digm to the realm of open quantum systems. Second, Yuto studied how the mea-
surement backaction qualitatively alters out-of-equilibrium many-body dynamics
and found that correlations can propagate faster than the conventional speed limit
known as the Lieb-Robinson bound at the expense of the probabilistic nature of
quantum measurement. Third, Yuto employed the eigenstate thermalization
hypothesis to address single-trajectory thermalization and heating in generic
many-body systems under quantum measurement. Fourth, Yuto devised a new
canonical transformation to solve generic quantum impurity problems in and out of
equilibrium and developed a powerful variational approach to the nonequilibrium
Kondo models and many-body systems recently realized in Rydberg gases.
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Understanding physics in open and out-of-equilibrium quantum systems is still
in its infancy and largely unexplored especially in the context of many-body
physics. I believe that the results obtained by Yuto in this Thesis should also be
applicable to other systems in AMO physics and condensed matter physics.

Tokyo, Japan
December 2019

Prof. Masahito Ueda
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Abstract

This Thesis studies the fundamental aspects of many-body physics in quantum
systems open to an external world. The ability to observe and manipulate quantum
matter at the single-quantum level has revolutionized our approach to many-body
physics. At such an ultimate resolution, a quantum system exhibits an unavoidable
change due to the measurement backaction from an external observer. Moreover,
various types of controlled couplings between quantum systems and external
environments have been experimentally realized. These remarkable developments
thus point to a new research arena of open many-body systems, where an inter-
action with an external observer and environment plays a major role. The first part
of this Thesis is devoted to elucidating the influence of measurement backaction
from an external observer on quantum critical phenomena and out-of-equilibrium
many-body dynamics. The second part of this Thesis is devoted to revealing in- and
out-of-equilibrium physics of an open quantum system strongly correlated with an
external environment, where the entanglement between the system and the envi-
ronment plays an essential role. The results obtained in this Thesis should serve as
pivotal roles in understanding many-body physics of quantum systems open to an
external world, and they are applicable to experimental systems in atomic,
molecular and optical physics, quantum information science, and condensed matter
physics.
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Notations and Abbreviations

Notations

h Planck’s constant h ¼ 6:626� 10�34 J�s
�h Reduced Planck’s constant �h ¼ h=ð2pÞ ¼ 1:055�

10�34 J�s
kB Boltzmann constant kB ¼ 1:381� 10�23 J/K
c Speed of light c ¼ 299792458 m/s
e Electric charge e ¼ 1:602� 10�19 C
i Imaginary unit i ¼ ffiffiffiffiffiffiffi�1

p
p Ratio of circumference of a circle to its diameter

p ¼ 3:14159. . .
R Real number field
C Complex number field
N Natural number field
H Hilbert space
jwi 2 H State vector in H

hwj Dual vector of jwi
h/jwi 2 C Inner product of jwi and j/i
LðHÞ Set of linear operators on H

Ô 2 LðHÞ (hatted symbols) Linear operator

Î 2 LðHÞ Identity operator
q̂ 2 LðHÞ Density operator satisfying q̂� 0 and Tr½q̂� ¼ 1
½Â; B̂� Commutator ÂB̂� B̂Â of linear operators
fÂ; B̂g Anticommutator ÂB̂þ B̂Â of linear operators
dN Marked point stochastic process
dW Wiener stochastic process
E½�� Ensemble average over a stochastic process
K Tomonaga-Luttinger-liquid parameter
dðxÞ Dirac’s delta function
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r̂ Vector of the Pauli matrices
Id d � d identity matrix
P̂ Parity operator satisfying P̂

2 ¼ 1
Pf[A] Pfaffian of a real antisymmetric matrix A
A½M� Matrix antisymmetrization ðM �MTÞ=2
S½M� Matrix symmetrization ðMþMTÞ=2

Abbreviations

Ads Anderson
AFM Antiferromagnetic
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Chapter 1
Motivation and Outline

Abstract We review the background of the results presented in this thesis, which
studies the fundamental aspects ofmany-body physics in quantum systems open to an
external world. Firstly, we review recent remarkable experimental developments of
observing and manipulating quantummatter at the single-quantum level. We discuss
how they motivate the studies of elucidating the influence of an external observer on
quantum many-body phenomena beyond the conventional paradigm of closed sys-
tems. Secondly, we review the physics of open quantum systems strongly correlated
with an external environment and motivate the need of unveiling the entanglement
between the system and the environment to understand genuine many-body effects
such as the Kondo effect. Finally, we provide a short summary of each Chapter.

Keywords Open quantum systems · Quantum many-body systems · Ultracold
atoms · Kondo effect

Ultimately, — in the great future — we can arrange the atoms the way we want; the
very atoms, all the way down! What would happen if we could arrange the atoms
one by one the way we want them?

Richard Feynman asked this visionary question in 1959 [1]. Once considered to be
of purely academic interest, such microscopic manipulations and observations of
genuine quantum systems are now routinely performed in the laboratory. In both
theory and experiment, understanding of physics in controlled quantum systems has
become one of the central problems in science.

The last two decades have witnessed remarkable developments in studies of in-
and out-of-equilibrium many-body physics of an isolated, closed quantum system,
as primarily promoted by rapid advances in atomic, molecular and optical (AMO)
physics. Meanwhile, recent experimental advances have allowed one to measure and
manipulate many-body systems at the single-quantum level, thus revolutionizing our
approach to many-body physics. With such an ultimate resolution, the measurement
backaction, which is the fundamental effect acted by an external observer, becomes
significant. Moreover, microscopic manipulation capabilities of many-body systems
have realized quantum systems strongly correlated with an external environment.
These remarkable advances thus point to a new arena of many-body physics that
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2 1 Motivation and Outline

is open to an external world, in which interactions with an external observer or an
environment play a major role. The research of this Thesis is devoted to addressing
the question of how the ability to measure and manipulate single quanta can create
a new frontier of many-body physics beyond its conventional paradigm.

The first part of this Thesis elucidates how the influences of measurement backac-
tion from an external observer trigger new types of many-body phenomena that have
no analogues in closed systems (Fig. 1.1a). The time evolution of an isolated quantum
system is described by a single Hermitian operator, i.e., the Hamiltonian. In contrast,
under continuous observation, the dynamics becomes intrinsically nonunitary due to
the measurement backaction and is characterized not only by the Hamiltonian but
also by a measurement process. After reviewing a general theory of the nonunitary
dynamics under continuous measurement in Chap. 2, we apply it to study effects of
measurements on quantum many-body phenomena in Chaps. 3 and 4.

Our studies are mainly motivated by recent revolutionary developments in AMO
physics. Already a number of groundbreaking experiments have been achieved over
the past decade [2–31]. In particular, realizations of the technique known as quantum
gas microscopy [2–13] have enabled one to detect a large number of atoms trapped in
an optical lattice at the single-atom precision. Other examples include direct obser-
vations of quasi-long-range order predicted by the Tomonaga-Luttinger liquid (TLL)
theory [14] and theBerezinskii-Kosterlitz-Thouless (BKT) transition [15, 16],micro-
scopic observations of the superfluid-to-Mott insulator transition [17], quantumwalk
of single [18] and two atoms [19], light-cone propagation of correlations limited by
the Lieb-Robinson (LR) velocity vLR [20–22], the propagation of spin impurities
[23] and magnons [24], and measurements of entanglement entropy [25] and antifer-
romagnetic fermionic correlations [26–29]. Similar microscopic observations have
also been made in trapped ions [30, 31]. Further developments of in-situ imaging
techniques will allow one to perform a nondestructive, real-time monitoring of the
many-body dynamics [11, 32–39]. The aim of the first part of this Thesis is to show

Fig. 1.1 Two distinct classes of open quantum many-body systems studied in this Thesis. a Quan-
tum many-body systems under continuous observation discussed in the first part of Thesis. An
external observer plays a role as an environment and extracts information about a quantum many-
body system by performing continuous measurements. This causes an inevitable change of the
measured system, i.e., the measurement backaction. b Quantum systems strongly correlated with
environment discussed in the second part of Thesis. Strong correlations between a quantum system
and a many-body environment invalidate the Born-Markov approximation; one has to explicitly
take into account the system-environment entanglement
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how one can utilize these revolutionary techniques to reveal previously unexplored
effects of measurements on quantum many-body physics.

To achieve this aim, we focus on two fundamental aspects of many-body physics,
namely, quantum critical phenomena and out-of-equilibrium dynamics. In Chap. 3,
we analyze an effective non-Hermitian Hamiltonian that governs the nonunitary
evolution under continuous observation and elucidate the influence of measurement
backaction on quantum criticality. In particular, we identify two possible types of
relevant non-Hermitian perturbations to one-dimensional quantum critical systems
and show how they significantly alter the underlying critical phenomena and phase
transitions beyond the conventional paradigms of the TLL theory and the BKT tran-
sition. We also analyze the influence of measurement backaction on quantum phase
transitions in higher dimensions by focusing on the superfluid-to-Mott insulator tran-
sition in the Bose-Hubbardmodel. In Chap. 4, we discuss out-of-equilibrium dynam-
ics influenced by the measurement backaction. We present three general theoretical
frameworks and apply them to specific models to elucidate the underlying physics.
Firstly, we introduce the notion of the full-counting dynamics that is open many-
particle dynamics conditioned on certain measurement outcomes. Based on this
formalism, we address propagation of correlations and that of information through
many-body systems under measurement backaction. We consider an exactly solv-
able model and show that, by harnessing backaction due to observation of individual
quanta, correlations can propagate beyond the LR bound at the cost of the probabilis-
tic nature of quantummeasurement. Secondly, we develop the framework of quantum
thermalization in openmany-body systems,wherewe consider couplings of quantum
systems to generic Markovian environments permitted by quantum measurements
and engineered dissipations. This gives yet another insight into why thermodynam-
ics emerges so universally in our world. Finally, we formulate diffusive multiparticle
dynamics subject to minimally destructive spatial observation. We derive a diffusive
stochastic time-evolution equation to describe motions of indistinguishable particles
under measurement by taking the limit of weak-spatial resolution and strong atom-
light coupling. We demonstrate that the measurement backaction qualitatively alters
the underlying dynamics depending on the distinguishability of particles. For all the
theoretical considerations presented in this part, we propose possible experimental
realizations with quantum gases.

The second part of this Thesis is devoted to studying many-body physics in quan-
tum systems that are strongly correlated with an external environment, where the
entanglement between the systemand the environment plays a central role (Fig. 1.1b).
In such situations, the strong system-bath correlations invalidate the Born-Markov
approximation. We thus need to explicitly take into account the degrees of free-
dom of the environment rather than eliminating them as done in the master-equation
approach. We focus on quantum impurity as the most fundamental paradigm of such
a strongly correlated open quantum system. Historically, the physics of quantum
impurity has originally been studied in the context of solid-state materials. The two
most fundamental concepts developed there are the Kondo-singlet state [40], which
is the many-body bound state formed by a localized spin impurity and the fermionic
environment, and the polaron [41], which is a quasiparticle excitation formed by a
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mobile impurity dressed by surrounding phonon excitations. To this date, a broad
class of problems that correspond to quantum impurity correlated with an external
environment have been at the forefront of many subfields in physics. For instance,
they have proven crucial to understanding thermodynamic properties of strongly cor-
related solid-state materials [42–46], decoherence [47–49] and transport phenomena
[50–61] of nanodevices such as quantum dots and Nitrogen-vacancy center that are
promising candidates for future quantum information technology, and lie at the heart
of powerful numerical methods such as the dynamical mean-field theory [62]. The
physics of a quantum impurity has recently attracted renewed interests owing to
experimental developments of manipulation techniques in ultracold gases [63–69],
molecular electronics [53], carbon nanotubes [54, 70, 71], and nanodevices [59, 72].
While equilibrium properties of a quantum impurity are well established, these new
techniques motivate a surge of studies in an out-of-equilibrium regime which is still
an area of active research with many open questions. The aim of the second part
of this Thesis is to elucidate the role of strong correlations in the prototypical open
quantum systems for both in- and out-of-equilibrium regimes.

In Chap. 5, we develop a versatile and efficient theoretical approach to solving
generic quantum spin-impurity problems in and out of equilibrium and then apply
it to reveal previously unexplored nonequilibrium dynamics. A quantum impurity
in nonequilibrium regimes has been previously analyzed by a number of theoretical
approaches [73–113]. In spite of the rich theoretical toolbox, analysis of the long-
time dynamics remains very challenging. Previous approaches become increasingly
costly at long times due to, for instance, artifacts of the logarithmic discretization in
Wilson’s numerical renormalization group [114] or large entanglement in the time-
evolved state [115]. Another difficulty is to extend the previous approaches to generic
spin-impurity models beyond the simplest Kondo models. These major challenges
motivate a study to develop a new theoretical approach to quantum impurity systems.
To overcome the challenges, we introduce a new canonical transformation that can
completely decouple the impurity and the environmental degrees of freedom. We
achieve this by employing the parity symmetry hidden in the total Hamiltonian of
spin-impurity models. We combine the transformation with the fermionic Gaussian
states and introduce a family of efficient variational many-body wavefunctions that
can encode strong impurity-environment correlations. We benchmark our approach
by demonstrating its successful application to the anisotropic [47] and two-lead [79]
Kondo models and also by comparing it to results obtained by other methods such as
the matrix-product state ansatz [116] and the Bethe ansatz [117–119]. We apply our
method to reveal new types of nonequilibrium dynamics that are difficult to explore
in the previous approaches. We propose a possible experiment in ultracold gases
to test the predicted spatiotemporal dynamics by using quantum gas microscopy.
We also extend our approach to a bosonic environment and apply it to study the
strongly correlated system of spinful Rydberg molecules, which has been realized in
state-of-the-art experiments [120–122]. In Chap. 6, we analyze out-of-equilibrium
physics of yet another fundamental class of quantum impurities, that is, a mobile
spinless impurity known as polaron [41]. As a concrete physical system, we study an
impurity atom strongly interacting with a two-component Bose-Einstein condensate
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mimicking a syntheticmagnetic environment.We show how theRamsey interference
technique acting on the environment can be used to directly measure novel out-of-
equilibrium dynamics of magnetic polarons beyond the conventional paradigm of
solid-state physics. We also discuss its concrete experimental realization in ultracold
gases.

Outline

Let me summarize this introduction by providing an overview of the following Chap-
ters. Each Chapter includes a detailed introduction to the presented results and their
relations to previous works.

Chapter 2 reviews a general theory of continuous observation of quantum systems.
We formulate a stochastic time-evolution equation of quantum systems subject to
measurement backaction. Each stochastic realization of the dynamics is known as
the quantum trajectory.We introduce several important classes of continuously mon-
itored dynamics defined by a subensemble of quantum trajectories, which will play
crucial roles in the subsequent discussions of the first part of this Thesis.

Chapter 3 addresses the influences of measurement backaction from continuous
observation on quantum critical phenomena. We do this by introducing and ana-
lyzing an effective non-Hermitian Hamiltonian describing the underlying dynamics
with continuous monitoring. We identify relevant non-Hermitian perturbations to
the Tomonaga-Luttinger liquid and discuss anomalous one-dimensional critical phe-
nomena triggered by the measurement backaction. We also discuss the influence of
continuous observation on quantum phase transitions in higher dimensions by study-
ing the Bose-Hubbard model as a concrete example. Possible experimental realiza-
tions with engineered dissipations and quantum gas microscopy are discussed. This
Chapter is based on the publications [123, 124]:

• Parity-time-symmetric quantum critical phenomena, Yuto Ashida, Shunsuke
Furukawa and Masahito Ueda, Nature Communications 8, 15791 (2017).

• Quantum critical behavior influenced by measurement backaction in ultracold
gases, Yuto Ashida, Shunsuke Furukawa and Masahito Ueda, Physical Review A
94, 053615 (2016).

Chapter 4 analyzes out-of-equilibrium dynamics of many-particle systems under
measurement backaction.Wedevelop three general theoretical frameworks and apply
them to specific models to elucidate the underlying physics. First, we introduce the
notion of open many-particle dynamics conditioned on the number of quantum jump
events, whichwe term the full-counting dynamics.We show the emergence of unique
phenomena such as nonlocal and chiral propagation of correlations beyond the Lieb-
Robinson bound. Second, we extend the framework of quantum thermalization to
open generic many-body systems perturbed by measurements or engineered dissi-
pations. Third, we formulate diffusive multiparticle dynamics under a minimally
destructive spatial observation and demonstrate that the measurement indistinguish-
ablity of particles can qualitatively alter the underlying transport dynamics. Possible

https://www.nature.com/articles/ncomms15791
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.053615
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experimental realizations in ultracold gases are discussed. This Chapter is based on
the publications [125–127]:

• Thermalization and Heating Dynamics in Open Generic Many-Body Systems, Yuto
Ashida, Keiji Saito and Masahito Ueda, Physical Review Letters 121, 170402
(2018).

• Full-Counting Many-Particle Dynamics: Nonlocal and Chiral Propagation of Cor-
relations, Yuto Ashida and Masahito Ueda, Physical Review Letters 120, 185301
(2018).

• Multiparticle quantum dynamics under real-time observation, Yuto Ashida and
Masahito Ueda, Physical Review A 95, 022124 (2017).

Chapter 5 addresses in- and out-of-equilibrium physics of quantum spin impuri-
ties strongly correlated with an external many-body environment. Introducing new
canonical transformations,wedevelop aversatile and efficient variational approach to
solving generic quantum impurity problems. We apply our approach to the Kondo-
type models and benchmark it by comparing to the results obtained from other
numerical and analytical methods. We also reveal new types of out-of-equilibrium
phenomena that are difficult to obtain in the previous approaches. We discuss possi-
ble experimental realizations using ultracold atoms to test the presented theoretical
predictions. This Chapter is based on the publications [128–132]:

• Solving Quantum Impurity Problems in and out of Equilibrium with the Variational
Approach, Yuto Ashida, Tao Shi, Mari C. Bañuls, J. Ignacio Cirac and Eugene
Demler, Physical Review Letters 121, 026805 (2018).

• Variational principle for quantum impurity systems in and out of equilibrium:
application to Kondo problems, Yuto Ashida, Tao Shi, Mari C. Bañuls, J. Ignacio
Cirac and Eugene Demler, Physical Review B 98, 024103 (2018).

• Exploring the anisotropic Kondo model in and out of equilibrium with alka-
line-earth atoms, Marton Kanász-Nagy, Yuto Ashida, Tao Shi, Catalin P. Moca,
Tatsuhiko N. Ikeda, Simon Fölling, J. Ignacio Cirac, Gergely Zaránd and Eugene
Demler, Physical Review B 97, 155156 (2018).

• Quantum Rydberg Central Spin Model, Yuto Ashida, Tao Shi, Richard Schmidt,
H. R. Sadeghpour, J. Ignacio Cirac and Eugene Demler, Physical Review Letters
123, 183001 (2019).

• Efficient variational approach to dynamics of a spatially extended bosonic Kondo
model, Yuto Ashida, Tao Shi, Richard Schmidt, H. R. Sadeghpour, J. Ignacio Cirac
and Eugene Demler, Physical Review A 100, 043618 (2019).

Chapter 6 studies out-of-equilibriumdynamics of amobile particle strongly interact-
ingwith amagnetic environment. Analyzing the impurity atom coupled to a synthetic
magnetic environemnt created by the two-component Bose-Einstein condensate, we
demonstrate the emergence of unique dynamics in the strongly coupling regime that
is not attainable in the conventional solid-state systems. We identify its origin as
the nontrivial interplay between few- and many-body bound states. We discuss a
concrete experimental realization of our consideration. This Chapter is based on the
publication [133]:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.185301
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022124
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.026805
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.024103
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.155156
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.183001
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.043618
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• Many-body interferometry of magnetic polaron dynamics, Yuto Ashida, Richard
Schmidt, Leticia Tarruell and Eugene Demler, Physical Review B 97, 060302(R)
(2018).

Chapter 7 concludes this Thesis with a future outlook.
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Chapter 2
Continuous Observation of Quantum
Systems

Abstract We review a general theory to describe the nonunitary evolution of quan-
tum systems under measurement, which is the main subject of the first part of this
Thesis. Quantum measurement theory provides us with a theoretical framework to
discuss how a quantum system exhibits an unavoidable change due to a measurement
process. In particular, theory of continuous measurements gives a unified description
to study the nonunitary dynamics of quantum systems subject to weak and frequent
repeated measurements. In Sect. 2.1, we formulate a quantum measurement process
based on an indirect measurement model and review its mathematical property. In
Sect. 2.2, we apply it to formulate a theory of continuous observations, in which
measurements are performed continuously in time.

Keywords Quantum measurement theory · Quantum trajectory · Nonunitary
dynamics · Dissipation

2.1 General Theory of the Nonunitary Evolution

2.1.1 Indirect Measurement Model

We consider a general quantum measurement process described by a physical inter-
action between a system S with Hilbert spaceH S and an environment E with Hilbert
space H E [1–3]. The composite system S + E is assumed to be isolated. We start
from a separable initial quantum state of the whole system described by

ρ̂S(0) ⊗ ρ̂E (0), (2.1)

where ρ̂S(0) is the initial state of the system S, and ρ̂E (0) is the initial state of the
environment E (see Fig. 2.1). After the time evolution with a unitary operator Û , the
system and the environment interact and get entangled:

Û
(
ρ̂S(0) ⊗ ρ̂E (0)

)
Û †. (2.2)
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System

Environment
Measurement 
Outcome

Probability

Post-Measurement State

Fig. 2.1 Schematic figure illustrating the model of the indirect measurement. The total system is
initially prepared in a separable state of a system S and an environment E . They get entangled after
a unitary evolution Û . A projection measurement P̂m is performed on the environment, generating
a measurement outcome m with a probability pm . Due to the measurement backaction, the system
alters its state to the post-measurement state ρ̂m . This process is characterized by a set of measure-
ment operators M̂m,k , where k labels the bases in the spectral decompositions of ρ̂E (0) and P̂m (see
Eq.2.10)

Then, we perform a measurement on the environment, which is described by the
projection operator P̂m on the subspace of the Hilbert space of the environment E
with m being a measurement outcome. A set of projection operators satisfies the
completeness condition ∑

m

P̂m = ÎE , (2.3)

where ÎE is the identity operator acting onH E . The probability pm of obtaining the
outcome m is then given by

pm = TrS+E

[(
ÎS ⊗ P̂m

)
Û
(
ρ̂S(0) ⊗ ρ̂E (0)

)
Û †

(
ÎS ⊗ P̂m

)]
. (2.4)

The post-measurement state ρ̂m of the system S after obtaining the outcome m
becomes

ρ̂m = 1

pm
TrE

[(
ÎS ⊗ P̂m

)
Û
(
ρ̂S(0) ⊗ ρ̂E (0)

)
Û †

(
ÎS ⊗ P̂m

)]
. (2.5)

We introduce the spectral decompositions of ρ̂E (0) and P̂m as

ρ̂E (0) =
∑

i

pi |ψi 〉E E 〈ψi |, (2.6)

P̂m =
∑

j

|φm, j 〉E E 〈φm, j |. (2.7)

Then, Eq. (2.5) can be written as

ρ̂m =
∑

k M̂m,k ρ̂S M̂
†
m,k

pm
(2.8)
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with the probability

pm =
∑

k

TrS
[
ρ̂S M̂

†
m,k M̂m,k

]
. (2.9)

Here, the operators M̂m,k are called measurement operators, or the Kraus operators
[4, 5], and are defined by

M̂m,k ≡ M̂m,(i, j) ≡ √
pi E 〈φm, j |Û |ψi 〉E , (2.10)

where k ≡ (i, j) labels the bases in the spectral decompositions of ρ̂E (0) and P̂m .
We can show that the measurement operators satisfy the normalization condition:

∑

m,k

M̂†
m,k M̂m,k = ÎS, (2.11)

where ÎS is the identity operator acting on the system. If we are interested only
in the probability distribution {pm} of the measurement outcomes and not in the
post-measurement states {ρ̂m}, we can consider a positive operator-valued measure
(POVM) {Êm} which is defined by

Êm ≡
∑

k

M̂†
m,k M̂m,k . (2.12)

The probability of obtaining the outcome m is then given by

pm = TrS
[
ρ̂S Êm

]
. (2.13)

Wecan show the normalization condition
∑

m pm = 1 from the completeness relation
∑

m Êm = ÎS .

2.1.2 Mathematical Characterization of Measurement
Processes

In the previous subsection, we formulate measurement processes in terms of an
indirect measurement model. There, the measurement process associated with the
measurement outcome m was characterized as a linear map Em acting on the density
matrix ρ̂S (cf. Eq. 2.8):

Em(ρ̂S) =
∑

k

M̂m,k ρ̂S M̂
†
m,k, (2.14)
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where operators M̂m,k satisfy the normalization condition
∑

m,k M̂
†
m,k M̂m,k = ÎS .

The probability pm of an outcome m being obtained and the corresponding post-
measurement state ρ̂m are

pm = TrS
[Em(ρ̂S)

]
, (2.15)

ρ̂m = Em(ρ̂S)

pm
. (2.16)

In fact, we can characterize a linear map E = ∑
m Em of measurement processes

from several physical requirements in a mathematically rigorous manner.

Definition 1.1 (positivity) Let H and H ′ be the Hilbert space and E be a linear
mapping from L(H) to L(H ′). E is called positive if Ô ≥ 0 implies E(Ô) ≥ 0 for
all Ô ∈ L(H). Note that Ô ≥ 0 means that 〈ψ |Ô|ψ〉 ≥ 0 for all |ψ〉 ∈ H .

Definition 1.2 (n-positivity) Let H and H ′ be the Hilbert spaces and E be a linear
mapping fromL(H) toL(H ′). LetHn be an n-dimensional Hilbert space.E is called
n-positive if E ⊗ In : L(H ⊗ Hn) → L(H ′ ⊗ Hn) is positive. Here In represents
the identity operator on L(Hn).

The positivity of a mappingE ensures that it always maps a physical quantum state to
another physical state whose density matrix must be positive. From these definitions,
we introduce the notion of complete positivity as follows.

Definition 1.3 (complete positivity) Let H and H ′ be the Hilbert space and E be a
linear mapping from L(H) to L(H ′). E is called completely positive if and only if
E is n-positive for all n ∈ N.

We can now state the important theorem that mathematically characterizaes a general
measurement process.

Theorem 1.4 (mathematical characterization of measurement processes [4–7]) Let
{Em}m∈M be a set of linear mappings acting onL(HS). Let us consider the following
two conditions:
(i) E ≡ ∑

m Em is trace preserving, i.e., TrS[E(Ô)] = TrS[Ô] for all Ô ∈ L(HS).
(ii) Em is completely positive for all m ∈ M.
If andonly if {Em}m∈M satisfies the conditions (i) and (ii), {Em}m∈M canbe represented
by

Em(ρ̂S) = TrE
[(

ÎS ⊗ P̂m
)
Û
(
ρ̂S ⊗ ρ̂E

)
Û †

(
ÎS ⊗ P̂m

)]
(2.17)

for some set of {HE , ρ̂E , Û , {P̂m}m∈M}, whereHE is a Hilbert space, ρ̂E is a density
operator of HE , and Û is a unitary operator acting on HS ⊗ HE , and {P̂m}m∈M is
a set of projection operators acting on the subspace of HE corresponding to each
measurement outcome m.
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For a given completely positive and trace preserving (CPTP) mapping,
Theorem 1.4. guarantees the existence of an environment and a unitary operator
which can reproduce the CPTPmapping. However, the constructed environment and
the unitary operator are often artificial and rather mathematical objects that cannot
necessarily give us a physical insight. Therefore, to deal with a real physical system,
it is highly desirable to provide a concrete formulation of a quantum measurement
process from a microscopic model governing the physical interaction between the
measured system and the environment [8–10]. In the next subsection, we perform
such an analysis for continuously observed quantum systems, in which repeated
indirect measurements are frequently performed on the system. In particular, we will
derive the simple stochastic time-evolution equations governing the noisy quantum
dynamics under continuous observations. These will provide the basics of our study
on many-body systems under continuous observation, which is the main subject of
the first part of this Thesis.

2.2 Continuous Observation of Quantum Systems

Continuous measurement theory, which is also often called as the quantum trajectory
approach to open quantum systems, has originally been developed in the field of
quantum optics in parallel by several groups having rather different motivations
such as quantum measurement [11–14] and laser cooling of atoms [15]. It provides
a clear physical picture of the nonunitary and noisy dynamics of systems under
continuous observation. The quantum trajectory approach is also important as an
efficient numerical method for open quantum systems since it allows one to solve
the master equation by taking the ensemble average over stochastic time evolutions
of pure quantum states, thus avoiding the complexity of tracking the evolutions of the
full densitymatrix. In this section, we briefly review the quantum trajectory approach
from a perspective of quantum measurement.

2.2.1 Repeated Indirect Measurements

We assume that the system repeatedly interacts with the measuring apparatus (meter)
with the Hilbert space HM during a short interaction time τ , and after each inter-
action, we perform a projection measurement on the meter and obtain a sequence
of measurement outcomes (see Fig. 2.2). The meter is reset to a state |ψ0〉M after
each interaction such that it retains no memory about the system, ensuring that the
dynamics is Markovian.

We choose an initial state as the product state between the system and the meter:

ρ̂(0) = ρ̂S(0) ⊗ P̂0, P̂0 = |ψ0〉MM 〈ψ0|, (2.18)
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Fig. 2.2 Schematic figure illustrating the model of repeated indirect measurements. The initial
state is prepared in the product state between a system and a measuring apparatus (meter). The total
system evolves with a unitary operator Û (τ ) during a time interval τ . A projection measurement is
performed on the meter, after which the meter is reset to the initial state P̂0 = |ψ0〉MM 〈ψ0|. The
whole process is repeated and a sequence of measurement outcomes {m1,m2 . . .} is obtained

and consider the Hamiltonian

Ĥ = ĤS + V̂ , V̂ = γ

M∑

m=1

Âm ⊗ B̂m + H.c., (2.19)

where ĤS is a Hamiltonian governing the unitary dynamics of the system, γ ∈ R

characterizes the strength of the coupling between the system and the meter, Âm is
a linear operator acting onH S . We assume that B̂m acts onHM and changes a state
of the meter into the subspace of HM with a measurement outcome m:

P̂m ′ B̂m = δm ′m B̂m (m ′ = 0, 1, . . . , M; m = 1, 2, . . . , M), (2.20)

where P̂m ′ is a projection measurement on the subspace ofHM providing a measure-
ment outcome m ′. A set of P̂m ′ satisfies the completeness condition

∑M
m ′=0 P̂m ′ = Î .

For each indirect measurement process, there are two possibilities. The first one
is to observe a change of the state of the meter, which corresponds to obtaining an
outcomem = 1, 2, . . . , M . The second one is to observe no change in the meter, i.e.,
it remains in the reset state |ψ0〉M and thus gives the outcome 0. We first address the
first case. The nonunitary mapping Em of the system ρ̂S corresponding to obtaining
measurement outcome m = 1, 2, . . . , M is given by

Em(ρ̂S) = TrM
[
P̂mÛ (τ )

(
ρ̂S ⊗ P̂0

)
Û †(τ )P̂m

]
, (2.21)

where we define Û (t) = e−i Ĥ t and TrM denotes the trace over the meter. To simplify
this, it is convenient to transform to the interaction picture:

ÛI (t) = Û †
S (t)Û (t) (2.22)
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with ÛS(t) = e−i ĤS t . The unitary operator ÛI satisfies the time-evolution equation

∂ÛI (t)

∂t
= −i V̂I (t)ÛI (t), (2.23)

where we denote V̂I (t) = Û †
S (t)V̂ ÛS(t). We assume that the interaction time τ is

short such that the measurement backaction is weak γ τ � 1. The unitary operator
ÛI (τ ) can then be expanded as

ÛI (τ ) � Î − iτ V̂I (τ ) − τ 2

2
V̂ 2
I (τ ). (2.24)

The mapping Em in Eq. (2.21) is approximated by

Em(ρ̂S) � τ 2ÛS(τ )TrM
[
P̂mVI (τ )

(
ρ̂S ⊗ P̂0

)
V̂ †
I (τ )P̂m

]
Û †

S (τ )

� τ L̂m ρ̂S(τ )L̂†
m, (2.25)

where ρ̂S(τ ) = ÛS(τ )ρ̂SÛ
†
S (τ ) and we introduce operators L̂m by

L̂m =
√

γ 2τ 〈B̂†
m B̂m〉0 Âm . (2.26)

We here denote 〈· · · 〉0 as an expectation value with respect to |ψ0〉M . The probability
pm of obtaining an outcome m = 1, 2, . . . , M is given by

pm = TrS[Em(ρ̂S)] = τTrS[L̂m ρ̂S(τ )L̂†
m]. (2.27)

We next consider the second case in which one observes no change of the state of
the meter and thus obtains the outcome 0. The nonunitary mapping E0 in this case is

E0(ρ̂S) = TrM
[
P̂0Û (τ )

(
ρ̂S ⊗ P̂0

)
Û †(τ )P̂0

]

� ÛS(τ )

{
ρ̂S − τ 2

2
TrM [P̂0(V̂ 2

I (τ )ρ̂S + ρ̂S V̂
†2
I (τ ))P̂0]

}
Û †

S (τ )

= ρ̂S(τ ) − τ

2

{
M∑

m=1

L̂†
m L̂m, ρ̂S(τ )

}

, (2.28)

where {Ô, Ô ′} ≡ Ô Ô ′ + Ô ′ Ô . The probability p0 of no change being observed is

p0 = TrS[E0(ρ̂S)] = 1 − τ

M∑

m=1

TrS[L̂m ρ̂S(τ )L̂†
m]. (2.29)

We note that the probabilities satisfy the normalization condition
∑M

m ′=0 pm ′ = 1.
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2.2.2 Quantum Jump Process

Based on the formalism introduced in the previous subsection, we can derive the
simple stochastic time-evolution equation describing the dynamics of quantum sys-
tems under continuous observation. To achieve this, we study the evolution during a
small time interval dt = Nτ which containsmany repetitions of interactions with the
meter, i.e., N  1. Considering a sufficiently weak system-meter coupling γ τ � 1,
the probability pm ∼ O(γ 2τ 2) (m = 1, 2, . . . , M) of observing a change of themeter
during the time interval dt can be assumed to be small. We call such a change as a
“jump” process. More specifically, we assume that dt is small enough so that (i) a
jump process occurs at most once in the time interval dt , i.e., the probability of more
than one jump process being observed is negligible, and (ii) the time interval dt
is short compared to the time scale of the dynamics of the system, resulting in the
approximation

ÛS(dt) � Î − i ĤSdt. (2.30)

Then, the nonunitary mapping 	m of the system during dt is

	m(ρ̂S) =
N∑

i=1

(EN−i
0 ◦ Em ◦ Ei−1

0

)
(ρ̂S)

= L̂m ρ̂S L̂
†
mdt + O(dt2) (2.31)

for a jump process with m = 1, 2, . . . , M and

	0(ρ̂S) = EN
0 (ρ̂S)

=
(
ÎS − i Ĥeffdt

)
ρ̂S

(
ÎS + i Ĥ †

effdt
)

+ O(dt2) (2.32)

for the no-jump process. Here, we introduce an effective non-Hermitian Hamiltonian
defined by

Ĥeff = ĤS − i

2

M∑

m=1

L̂†
m L̂m . (2.33)

During the time interval dt , a jump process 	m and the no-count process 	0 occur
with probabilities TrS[L̂m ρ̂S L̂†

m]dt and 1 − ∑M
m=1 TrS[L̂m ρ̂S L̂†

m]dt , respectively.
To describe this stochastic time evolution in the form of a stochastic differential

equation, it is useful to introduce measurement operators:

M̂0 = 1 − i Ĥeffdt, (2.34)

M̂m = L̂m

√
dt (m = 1, 2, . . . , M), (2.35)

where M̂0 acts on a quantum state if no jumps are observed during the time inter-
val [t, t + dt] and M̂m acts on it if a jump process m is observed. Note that the
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measurement operators satisfy the normalization condition (aside from a negligible
contribution of the order of O(dt2)):

M∑

m ′=0

M̂†
m ′ M̂m ′ = 1. (2.36)

For the sake of simplicity, let us assume that the initial state is pure and thus the state
|ψ〉S remains so in the course of time evolution. As outlined above, the detection of
a jump process is a stochastic process, reflecting the probabilistic nature of quantum
measurement. Its probability is characterized by the expectation value of the square of
the measurement operator M̂m with respect to a quantum state |ψ〉S (cf. Eq. (2.9)). In
the language of stochastic processes, this is formulated as a discrete random variable
dNm known as a marked point process [16] whose mean value is given by1

E[dNm] = 〈M̂†
m M̂m〉S = 〈L̂†

m L̂m〉Sdt, (2.37)

where E[·] represents the ensemble average over the stochastic process and 〈· · · 〉S
denotes an expectation value with respect to a quantum state |ψ〉S of the system.
These random variables satisfy the following stochastic calculus:

dNmdNn = δmndNm . (2.38)

Using these notations, the stochastic change of a quantum state |ψ〉 in the time
interval [t, t + dt] can be obtained as

|ψ〉S → |ψ〉S + d|ψ〉S =
⎛

⎝1 −
M∑

m=1

E[dNm ]
⎞

⎠ M̂0|ψ〉S√
〈M̂†

0 M̂0〉S
+

M∑

m=1

dNm
M̂m |ψ〉S√
〈M̂†

m M̂m〉S
.

(2.39)
Physically, the first term on the right-hand side describes the no-count process occur-
ringwith the probability 1 − ∑M

m=1 E[dNm] and the second term describes the detec-
tion of a jump process m occurring with a probability E[dNm]. We note that the
denominator in each term is introduced to ensure the normalization of the state vec-
tor. From Eqs. (2.34) and (2.35), we can rewrite Eq. (2.39) as

d|ψ〉S =
⎛

⎝1 − i Ĥeff + 1

2

M∑

m=1

〈L̂†m L̂m〉S
⎞

⎠ dt |ψ〉S +
M∑

m=1

⎛

⎝ L̂m |ψ〉S√
〈L̂†m L̂m〉S

− |ψ〉S
⎞

⎠ dNm .

(2.40)
The first term on the right-hand side describes the non-Hermitian time evolution,
in which the factor

∑M
m=1〈L̂†

m L̂m〉S/2 keeps the normalization of the state vector.
In the second term, when the jump event m is detected, an operator L̂m acts on the

1We remark that dNm is not a simple Poisson process as its intensity depends on a stochastic vector
|ψ〉S .
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quantum state and causes its discontinuous change (“jump”). A specific realization
of this stochastic time evolution is referred to as the quantum trajectory.

Taking the ensemble average over all possible trajectories, one reproduces the
Lindblad master equation [17, 18]. To see this explicitly, let us rewrite Eq. (2.40)
using the density matrix ρ̂S = |ψ〉S S〈ψ |:

dρ̂S = −i
(
Ĥeff ρ̂S − ρ̂S Ĥ

†
eff

)
dt +

M∑

m=1

〈L̂†m L̂m〉S ρ̂Sdt +
M∑

m=1

(
L̂m ρ̂S L̂

†
m

〈L̂†m L̂m〉S
− ρ̂S

)

dNm ,

(2.41)
where we take the leading order of O(dt) and use the stochastic calculus (2.38).
We note that this equation remains valid for a generic density matrix ρ̂S that is not
necessarily pure. Introducing the ensemble-averaged densitymatrix E[ρ̂S] and taking
the average of Eq. (2.41), one can show that the density matrix obeys the Lindblad
master equation [17, 18]:

d E[ρ̂S]
dt

= −i
(
ĤeffE[ρ̂S] − E[ρ̂S]Ĥ †

eff

)
+

M∑

m=1

L̂m E[ρ̂S]L̂†
m . (2.42)

Distinct subclasses of the quantum trajectory dynamics

Based on the quantum trajectory dynamics formulated above, we introduce several
distinct classes of continuously monitored dynamics, which will play crucial roles
in the following Chapters.

Single trajectory dynamics realized with the complete information
First, if an observer who can measure the meter has an ability to access the complete
information about measurement outcomes, i.e., all the time records and types of
quantum jumps, the dynamics is described by a single realization of the quantum
trajectory dynamics:

ρ̂S(t; {t1, t2, . . . , tn}, {m1,m2, . . . ,mn}) ∝ |ψtraj〉S S〈ψtraj|,

|ψtraj〉S =
n∏

k=1

[
Ûeff(
tk)L̂mk

]
Ûeff(t1)|ψ0〉S, (2.43)

where 0 < t1 < t2 < · · · < tn < t are occurrence times of jumps whose types are
{m1,m2, . . . ,mn}. We denote a time difference as 
tk = tk+1 − tk with tn+1 ≡ t , an
effective non-Hermitian time evolution as Ûeff(t) = e−i Ĥeff t , and |ψ0〉S as an initial
state of the system. In Chap. 4, we will address thermalization and heating dynamics
in such single-trajectory many-body dynamics [19].

Full-counting dynamics realized with partial information
Second, even if an observer cannot have access to the complete information, she/he
may still have an ability to access incomplete information about measurement out-
comes. One possible example is a capability to measure the total number of quantum
jumps occurred during a certain time interval, but not their types and occurrence
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times. We can then introduce the density matrix conditioned on the number n of
quantum jumps that have occurred during the time interval [0, t] as

ρ̂(n)(t) ∝
∑

α∈Dn

|ψα〉S S〈ψα |

=
∑

{mk }nk=1

∫ t

0
dtn · · ·

∫ t2

0
dt1

n∏

k=1

[
Ûeff (
tk)L̂mk

]
Ûeff (t1)ρ̂S(0)Û†

eff (t1)
n∏

k=1

[
L̂†
mk

Û†
eff (
tk)

]
,

(2.44)

where the ensemble average is taken over the subspace Dn spanned by all the pos-
sible trajectories having n quantum jumps during [0, t]. In other words, this can be
interpreted as coarse-grained dynamics of pure quantum trajectories (2.43), where
the number of jumps is known while the information about times and types of jumps
have been lost. We term this class of the dynamics as the full-counting dynamics
[20]. In Chap. 4, we will investigate the emergence of distinct out-of-equilibrium
many-particle phenomena in the full-counting dynamics.

Non-Hermitian evolution realized with no jump events
The no-jump process ρ̂(0)(t) (which is n = 0 case in Eq. (2.44)) is the simplest
example of the full-counting dynamics. Its time evolution is described by an effective
non-Hermitian Hamiltonian:

ρ̂(0)(t) ∝ Ûeff(t)ρ̂S(0)Û†
eff(t). (2.45)

While occurrence of quantum jumps will be increasingly likely at long times in
general, the non-Hermitian evolution (2.45) still provides physical insights into
quasi-equilibrium properties in a short-time regime, where contributions from quan-
tum jumps are not significant or can be eliminated by employing postselections. In
Chap. 3, we will discuss unconventional quantum critical behavior in such a non-
Hermitian many-body system influenced by measurement backaction from continu-
ous observation [21, 22].

Remark on cases that reduce to classical non-Hermitian dynamics

We remark on two cases inwhich the continuouslymonitored non-Hermitian dynam-
ics (2.45) and the dissipative dynamics described by the master equation (2.42)
become equivalent. The first case is when a system is subject to a one-body loss
(i.e., a jump operator is proportional to the annihilation operator of a particle) and its
quantum state is described by a coherent state (i.e., an eigenstate of the annihilation
operator). In this case, the jump term, which is the last term in Eq. (2.41), does not
alter the quantum state and thus can be neglected upon the normalization of the state.
Physically, this case is relevant to a (mean-field) Bose-Einstein condensate subject
to a one-body loss process [23–25], and also can be considered as a microscopic jus-
tification of the phenomenological non-Hermitian description employed in classical
optics [26, 27]. The second case is when a system is subject to a one-body loss and
it contains just a single particle. In this case, the jump term becomes trivial since it
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reduces to the particle-vacuum state and thus can be neglected. As neither quantum
entanglement nor particle correlations play roles in these two cases, physical phe-
nomena in such systems can, in principle, be also found in classical systems. In this
sense, we denote these systems as “classical” systems throughout this Thesis. Thanks
to recent experimental developments especially in classical optics, our understand-
ing of such (one-body) classical non-Hermitian phenomena have been significantly
advanced in this decade [26, 27].

Our aim is different from this direction.Wewill address genuine quantum systems,
in which continuously monitored dynamics (2.40) and dissipative dynamics (2.42)
are intrinsically distinct. In particular, we will study new aspects of quantum many-
body phenomena, where genuine quantum effects such as measurement backaction,
many-body correlations and entanglement play important roles. This is the main
theme of the first part of this Thesis.

2.2.3 Diffusive Limit

In the previous subsection, we consider a measurement process in which an operator
L̂m induces a discontinuous change of a quantum state. Here, we discuss yet another
type of continuous measurement associated with a diffusive stochastic process. To
do so, we assume that measurement backaction induced by an operator L̂m is weak
in the sense that it satisfies

L̂m = √
�( ÎS − lâm), (2.46)

where � characterizes the detection rate of jump events and l � 1 is a small dimen-
sionless parameter.We also assume that detections of jump events are frequent so that
an expectation value δNm of the number of jump m observed during a time interval
δt is sufficiently large. From the central-limit theorem, it can then be approximated
as

δNm � 〈L̂†
m L̂m〉Sδt +

√
〈L̂†

m L̂m〉SδWm

� �( ÎS − l〈âm + â†m〉S)δt + √
�

(
ÎS − l

2
〈âm + â†m〉S

)
δWm . (2.47)

Here, δWm ∈ N(0, δt) is a random variable obeying the normal distribution with
the zero mean and the variance δt . We then take the limit of weak l → 0 and fre-
quent � → ∞ measurement, while �l2 is kept constant. This limit is also known
as the diffusive measurement limit [1, 3]. The resulting change of a quantum state
ρ̂S → ρ̂S + δρ̂S during the interval δt can be obtained, at the leading order, by (cf.
Eq. (2.41))
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δρ̂S =
[

−i[ĤS, ρ̂S] − �l2

2

M∑

m=1

({
â†mâm, ρ̂S

} − 2âm ρ̂Sâ
†
m

)
]

δt

+√
�l2

M∑

m=1

[(
âm − 〈âm〉S

)
ρ̂S + ρ̂S

(
â†m − 〈â†m〉S

)]
δWm . (2.48)

Finally, taking the limit δt → 0, we obtain the following diffusive stochastic differ-
ential equation:

dρ̂S =
[

−i[ĤS, ρ̂S] − 1

2

M∑

m=1

({
l̂†ml̂m, ρ̂S

}
− 2l̂m ρ̂Sl̂

†
m

)]

dt

+
M∑

m=1

[(
l̂m − 〈l̂m〉S

)
ρ̂S + ρ̂S

(
l̂†m − 〈l̂†m〉S

)]
dWm, (2.49)

where we introduce operators l̂m = √
�l2âm and the Wiener stochastic processes

satisfying
E[dWm] = 0, dWmdWn = δmndt. (2.50)

As for a pure state, the diffusive stochastic time-evolution equation (2.49) can be
also written in terms of the wavefunction |ψ〉S as follows:

d|ψ〉S =
[

ÎS − i ĤS − 1

2

M∑

m=1

(
l̂†ml̂m − l̂m〈l̂m + l̂†m〉S + 1

4
〈l̂m + l̂†m〉2S

)]

dt |ψ〉S

+
M∑

m=1

(
l̂m − 1

2
〈l̂m + l̂†m〉S

)
dWm |ψ〉S. (2.51)

In Chap. 4, we will derive the diffusive stochastic Schrödinger equations appro-
priate for describing many-particle systems under a minimally destructive spatial
observation [28].

2.2.4 Physical Example: Site-Resolved Measurement
of Atoms

We discuss a specific physical example for a site-resolved position measurement of
atoms via dispersive light scattering [29]. The microscopic light-atom interaction
Hamiltonian is given by
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V̂mic = V̂ (−)
mic + V̂ (+)

mic ,

V̂ (−)
mic = −

∫
dr d · Ê(−)(r)̂†

g(r)̂e(r), V̂ (+)
mic = V̂ (−)†

mic , (2.52)

where ̂g,e(r) are the atomic field operators of the excited and ground states, the
dipole moment is defined by d ≡ 〈e|d̂|g〉 with d̂ being the dipole moment operator
of the transition. The electric field is given by

Ê(r) =
∑

k′,σ

√
�ωk ′

2ε0V
ek′,σ

(
â†k′,σ e

−ik′ ·r + H.c.
)

≡ Ê(−)(r) + Ê(+)(r), (2.53)

where â†k,σ (âk,σ ) is the creation (annihilation) operator of a photonwithwavevectork
and polarization σ , andwe introduce the positive and negative frequency components
of the electric field.

We consider dispersive light scattering of atoms by using an off-resonant coherent
probe light whose frequency and amplitude areωL andEP . We introduce the rotating

coordinate field ˆ̃
e = eiωL t ˆ̃

e, resulting in the following Heisenberg equation of
motion for the excited-atomic field

˙̃̂
e = i
 ˆ̃

e + i

�
d∗ · EP̂g, (2.54)

where 
 = ωL − ω0 is the detuning of the probe light from the atomic transition
frequency ω0. Since we assume an off-resonant condition (|
|  |d∗ · EP/�|), we
can perform the adiabatic elimination of the excited state

˙̃̂
e � 0:

ˆ̃
e � −d∗ · EP

�

̂g. (2.55)

This procedure is equivalent to taking into account only the leading term of d∗ ·
EP/(�
). We can rewrite the microscopic Hamiltonian (2.52) as

V̂ (−)
mic � d∗ · EP

�


∫
dr d · Ê(−)(r)̂†

g(r)̂g(r). (2.56)

For the sake of simplicity, we consider atoms tightly trapped in a one-dimensional
lattice as realized in the setup of quantum gas microscopy. Specifically, we adopt the
following tight-binding approximation:

̂g(r) = 	(y, z)
∑

m

w(x − md)b̂m, (2.57)
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where 	(y, z) = wy(y)wz(z) is the wave function confined in the transverse direc-
tion,w(x) is theWannier function of the lowest Bloch band centered at x = 0, and b̂m
is the annihilation operator of the atom at sitem. The resulting effective microscopic
Hamiltonian is

V̂mic � γ
∑

m

(
Ê (−)
m + Ê (+)

m

)
n̂m, (2.58)

where n̂m = b̂†mb̂m is an occupation-number operator of atoms at site m and we
assume that the probe light is polarized into the direction of the dipole moment,
leading to γ = |d|2EP/(�
). The operators Ê (−)

m and Ê (+)
m correspond to the anni-

hilation and creation operators of photonmodes localized around sitem. This Hamil-
tonian (2.58) can be considered as the system-meter interaction Hamiltonian (2.19)
in the indirect measurement model.

We now imagine that photodetectors are prepared at each site. A photodetection
at each site corresponds to a destructive measurement of photons scattered by an
atom at that site and is described by an operation acting on the photon field

|vac〉〈1m | ≡ |vac〉〈vac|Ê (+)
m , (2.59)

where |vac〉denotes the photon vacuumandm is a detected lattice site. In the language
of the indirectmeasurementmodel, this process can be interpreted as the combination
of a projection measurement and the subsequent reset to the initial state of the meter
(i.e., the photon vacuum). Finally, a jump operator acting on the Hilbert space of
atoms is given by

L̂m ∝
√

〈Ê (+)
m Ê (−)

m 〉vacn̂m, (2.60)

which should be compared with Eq. (2.26). While, in a more realistic treatment
directly relevant to quantum gas microscopy, we have to take into account effects of
diffraction of scattered fields (cf. Ref. [29]), the conclusions are essentially the same
as presented here.
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Chapter 3
Quantum Critical Phenomena

Abstract Quantum critical phenomena originate from collective behavior of
strongly correlated particles and lie at the heart of universal low-energy properties in
many-body systems. The strong correlation between quantumparticles is particularly
prominent in a low-dimensional system. In the first part of this Chapter, we identify
what types of measurements are relevant to one-dimensional low-energy properties
and address how they qualitatively alter the underlying quantum critical behavior. In
the second part, we study how the measurement backaction influences on quantum
phase transitions in higher dimensions by focusing on the Bose-Hubbard model. For
all the theoretical considerations, we discuss possible experimental implementations
in ultracold atomic gases.

Keywords Quantum critical phenomena · Non-Hermitian systems · Parity-time
symmetry · Tomonaga-Luttinger liquid · Sine-Gordon model

3.1 Introduction

3.1.1 Motivation: Measurement Backaction on Strongly
Correlated Systems

Quantum systems under continuous observations inevitably undergo nonunitary evo-
lutions due to measurement backaction, as we have reviewed in Chap.2. In this
Chapter, we explore effects of measurements on quantum critical phenomena (see
Fig. 3.1). This is mainly motivated by recent experimental realizations of quantum
gas microscopy [1–9], which enable one to measure many-body systems at the
single-atom level. With the technique at such an ultimate resolution, the measure-
ment backaction is expected to be significant. A natural question arising here is how
the underlying quantum critical behavior will be modified under measurement and
whether or not the concept of the universality need be extended. The frontier of ultra-
cold atomic experimentsmotivates us to reveal influences ofmeasurement backaction
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(b)(a)

Fig. 3.1 Schematic illustrations of strongly correlated systems under continuous observations. a
While the universal behavior of isolated one-dimensional quantum many-body systems can be
described by the Tomonaga-Luttinger liquid, we show that measurement backaction acted by an
external observer can qualitatively alter their low-energy critical behavior and phase diagrams.
b Ultracold atoms trapped in an optical lattice are described by the Bose-Hubbard model and
exhibit a quantum phase transition known as the superfluid-to-Mott insulator transition. We show
that measurement backaction can shift the transition point so that the Mott phase is expanded.
Reproduced from Fig. 1 of Ref. [10]. Copyright © 2016 by the American Physical Society

on strongly correlated many-body systems beyond the standard framework of quan-
tum many-body theory.

We address this question by studying the simplest quantum trajectory under con-
tinuousmeasurement.With continuousmonitoring, there are two possibilities at each
moment depending on whether or not one observes a quantum jump (see discussions
in the previous Chapter). The occurrences of quantum jumps typically lead to detri-
mental effects on quantum critical behavior since they induce heating or loss of par-
ticles. In the other possibility of no jumps being observed, the underlying low-energy
behavior can sustain quantum criticality while there still exist nontrivial effects
from continuous monitoring, as they manifest themselves as the non-Hermiticity
of the effective Hamiltonian governing the nonunitary evolution [11–13]. We study
the influences of measurement backaction on quantum criticality by analyzing this
effective non-Hermitian Hamiltonian. While occurrences of quantum jumps will be
increasingly likely at long times, the analysis can give physical insights into how a
weak continuous observation affects the underlying quantum critical behavior espe-
cially in a short-time regime. There, destructive effects from quantum jumps are not
significant or can be eliminated by employing postselections [14–17].

Before going into the detailed analyses, let us outline the main idea here. We
consider a quantum many-body system whose Hamiltonian Ĥ exhibits quantum
critical behavior, and assume that the system is under continuous observation char-
acterized by a set of jump operators {L̂ i }. We then analyze the following effective
non-Hermitian Hamiltonian:

Ĥeff = Ĥ − i �̂

2
, (3.1)
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�̂ = γ
∑

i

L̂†
i L̂ i , (3.2)

where �̂ denotes the backaction from continuous observation and γ characterizes
its strength. The effective Hamiltonian (3.1) in general has complex eigenvalues.
We interpret that their real parts describe effective values of energies while their
imaginary parts provide rates at which the corresponding eigenstates decay out of
the Hilbert space under consideration. If the original Hamiltonian commutes with all
the jump operators, i.e., [Ĥ , L̂ i ] = 0 for ∀i , the imaginary term in Ĥeff merely shifts
the imaginary part of the eigenvalues; the real parts of the eigenspectrum and the
corresponding eigenstates do not change. Thus, no qualitative changes in the critical
behavior will happen. In contrast, if Ĥ does not commute with some of the jump
operators, i.e., ∃i such that [Ĥ , L̂ i ] �= 0, there will emerge nontrivial effects from
measurements, as the measurement now alters the eigenstates and the eigenenergies
of Ĥeff . Throughout this Chapter, we focus on an effective ground state defined by
the state having the lowest real part of the spectrum.We find that the effective ground
state is particularly important in the continuously monitored dynamics since it also
has the minimal (or almost minimal) decay rate and thus survives longest under the
non-Hermitian evolution. We stress that the dynamics of interest here is different
from dissipative, unconditional dynamics obeying a master equation, in which the
dissipative process tends to monotonically destroy quantum criticality, often ending
up in trivial states such as an infinite-temperature or the vacuum state. In particu-
lar, it has recently been pointed out that such steady states have physical properties
analogous to high-temperature states [18, 19] or classical thermal systems [20–22].
In contrast, by analyzing the dynamics conditioned on measurement outcomes, we
here show that measurement backaction can give rise to qualitatively new quan-
tum critical phenomena beyond the conventional paradigm of many-body physics
[10, 23].

From a broader perspective, a theoretical approach utilizing the non-Hermitian
effective Hamiltonian has proved instrumental in a number of fields such as clas-
sical and quantum atomic, molecular and optical (AMO) physics [24–39], nuclear
physics [40, 41], open quantum systems [11, 12, 38, 39, 42, 43], condensed matter
physics [44–48], mesoscopic systems [49–51], biological network theory [52–54]
and quantum chemistry [55]. Studies of phase transitions in non-Hermitian systems
can be traced to the pioneering work by Fisher [56] in 1978 on an exotic criti-
cal point in the non-Hermitian Ising model, which is now known as the Yang-Lee
edge singularity. Also, in a wide class of non-Hermitian Hamiltonians satisfying the
parity-time (PT) symmetry, the real-to-complex spectral phase transition has been
found [57–59]. The transition is typically accompanied by an exceptional point [60]
in the discrete spectrum or the spectral singularity [61] in the continuum spectrum.
While these properties also hold for a certain class of antilinear symmetries [62],
one advantage of the PT symmetry is that it enables one to implement this symme-
try by spatially engineering gain-loss structures, leading to a rich interplay between
theory and experiment in classical optics [37, 63–66], superconductors [67], atomic
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physics [68], and optomechanics [69]. However, the previous works mainly concern
the classical (one-body) aspects and the role of strong correlations has yet to be clar-
ified. In this context, our studies fill this gap and create a bridge between the fields
of non-Hermitian physics and many-body physics.

In this Chapter, we proceed as follows. In the next two subsections, we review the
universal properties of one-dimensional many-body systems and identify what types
of non-Hermitian perturbations are relevant to the low-energy behavior. It turns out
that there are two possible relevant non-Hermitian terms: the quadratic term and the
periodic potential term. In Sect. 3.2, we analyze the former and show that the mea-
surement backaction bifurcates critical exponents into two, making a sharp contrast
to the conventional Tomonaga-Luttinger liquid in which only a single parameter gov-
erns the critical behavior.We discuss a possible realization in a one-dimensional Bose
gas with a two-body loss. In Sect. 3.3, we study the latter relevant non-Hermitian
perturbation and show that it induces new types of phase transitions, renormaliza-
tion group (RG) fixed points and RG flows. We propose a possible experimental
realization with a spatially modulated one-body loss. In Sect. 3.4, we investigate
effects of measurements on quantum phase transitions in higher dimensions. In par-
ticular, we show that the measurement backaction can shift a transition point of the
superfluid-to-Mott insulator transition. Our analyses presented in this Chapter can
readily be generalized to other many-body systems with different types of measure-
ments. In Sect. 3.5, we propose several concrete experimental systems and discuss
experimental parameters to test our theoretical predictions. In Sect. 3.6, we conclude
this Chapter with an outlook.

3.1.2 Universal Low-Energy Behavior in One-Dimensional
Quantum Systems

Interacting fermions in dimensions higher than one can typically be described by
Landau’s Fermi liquid theory [70]. There, in the vicinity of the Fermi surface, inter-
actions do not have drastic effects; they are taken into account by simply modifying
an effective mass of quasiparticle excitations. In one-dimensional (1D) systems, the
situation is completely different. Since particles cannot transport without affecting
the motions of all the other ones, interactions inevitably make excitations collec-
tive. In 1D systems, interactions thus dramatically enhance the strong correlations
between particles, invalidating the Fermi liquid picture. This peculiarity of 1D inter-
actingmany-body systems calls for an alternative description beyond the Fermi liquid
theory.

The Tomonaga-Luttinger liquid (TLL) theory provides a universal description
to study the low-energy behavior of 1D interacting fermions and bosons [71]. The
basic idea is to represent underlying collective excitations by bosonic quantum fields
and then reformulate the theory in terms of those bosonic degrees of freedom. If
there are no relevant contributions in the low-energy limit, the resulting effective
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field theory is quadratic in terms of the bosonic operators and thus exactly solvable.
This state of matter is known as the TLL. In the presence of relevant perturbations,
the most fundamental field theory is the sine-Gordon model [72, 73] that exhibits
the quantum phase transition known as the Berezinskii-Kosterlitz-Thouless (BKT)
transition [74–76]. In this subsection, we review some basic physical properties of
the TLL and the sine-Gordon model.

Brief summary of the Tomonaga-Luttinger liquid

The low-energy universal behavior of 1D many-body systems can be described by
the effective field theory known as the TLL [71]:

Ĥ0 = �v

2π

∫
dx

[
K
(
∂x θ̂

)2 + 1

K

(
∂x φ̂

)2]
, (3.3)

where v is the sound velocity, K is the so-called TLL parameter that characterizes the
interaction strength in a microscopic model, and φ̂ and θ̂ are scalar fields satisfying
the following commutation relation:

[φ̂(x), ∂x θ̂ (x ′)] = −iπδ(x − x ′). (3.4)

Physically, these fields represent the degrees of freedom of collective excitations in
the underlying microscopic model. For instance, in the case of spinful fermions, the
low-energy behavior is described by the two independent scalar fields φ̂c and φ̂s ,
which represent collective excitations of charge (i.e., density fluctuations) and spin,
respectively. This is the celebrated spin-charge separation in 1D systems.

The Hamiltonian Ĥ0 is quadratic and thus exactly solvable. Its energy dispersion
is gapless and linear. More specifically, (aside a constant offset) its spectrum is given
by

Ĥ0 = �v
∑

|k|<	

|k|b̂†k b̂k, (3.5)

where b̂k (b̂
†
k ) is an annihilation (creation) operator of a bosonic excitation labeled

by a wavevector k = 2πn/L with n = . . . − 2,−1, 1, 2 . . .. We introduce L as the
system size and 	 as a momentum cutoff. The operators b̂k and b̂

†
k can be related to

the field operators φ̂ and θ̂ via the mode expansions:

φ̂(x) = −
∑

|k|<	

i · sgn(k)
√

πK

2L|k|e
−a|k|/2−ikx (b̂†k + b̂−k), (3.6)

θ̂ (x) =
∑

|k|<	

i

√
π

2K L|k|e
−a|k|/2−ikx (b̂†k − b̂−k), (3.7)

where
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a = 1

	
(3.8)

is a short-distance cutoff. The gapless nature of the spectrum indicates the criticality
of the ground state. We can analytically show the critical decays of the correlation
functions as follows (the derivations will be given later):

Cθ
p(x) = 〈eipθ̂ (x)e−i pθ̂ (0)〉 =

(
a

|x |
)p2/(2K )

, (3.9)

Cφ
p (x) = 〈eipφ̂(x)e−i pφ̂(0)〉 =

(
a

|x |
)p2K/2

, (3.10)

where 〈· · · 〉 denotes an expectation value with respect to the ground state of Ĥ0 and
p is a real number. Both functions exhibit critical decays but with different criti-
cal exponents p2/(2K ) and p2K/2, which are characterized by a single parameter
known as the TLL parameter K .

To gain physical insights, let us consider a specific example of 1D spinless bosons.
The bosonic field 
̂(x) in the microscopic theory can be represented by the phase
field θ̂ (x) and the density operator ρ̂(x) as follows:


̂(x) �
√

ρ̂(x)ei θ̂ (x). (3.11)

The low-energy collective excitations of the density ρ̂(x) can be related to a scalar
field φ̂(x). Let us derive its representation based on a phenomenological argument
[71]. We start from the expression of the classical density

ρ(x) =
∑

n

δ(x − xn), (3.12)

where xn is the position of the n-th particle. Let ρ0 be the mean density of particles
and d = 1/ρ0 be the average distance. We introduce a monotonically increasing
continuous function χ(x) of the position, which takes the value χ(xn) = 2πn. We
then rewrite the density as

ρ(x) =
∑

n

δ(x − xn) =
∑

n

∂xχ(x)δ(χ(x) − 2πn) = ∂xχ(x)

2π

∞∑

p=−∞
eipχ(x),

(3.13)

where we use the Poisson summation formula to derive the last expression. Since we
are interested in the low-energy collective-mode fluctuations, it is useful to introduce
a relative field φ(x) from the crystalline equilibrium particle configuration χ0(x) =
2πx/d as

χ(x) = χ0(x) + 2φ(x) = 2πρ0x + 2φ(x). (3.14)
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If we formally interpret the density ρ(x) and the function φ(x) as quantum fields,
we arrive at the correct bosonized expression of ρ̂(x) in terms of a scalar field φ̂(x)
as1

ρ̂(x) �
[
ρ0 + ∂x φ̂(x)

π

] ∞∑

p=−∞
e
2i p

(
πρ0x+φ̂(x)

)

. (3.15)

Using Eqs. (3.11) and (3.15), we can express the original microscopic Hamiltonian
(cf. γ = 0 case inEq. (3.67) below) of a 1DBose gas in terms of the scalar fields φ̂ and
θ̂ . The resulting effective field theory is the TLL in Eq. (3.3), where the parameters
in the microscopic model are renormalized into the single TLL parameter K . The
correlation function Cθ

p=1(x) can be related to a one-particle correlation function of
a 1D Bose gas by

〈
̂†(x)
̂(0)〉 ∝
(

1

|x |
)1/(2K )

. (3.16)

Similarly, Cφ

p=2(x) characterizes its density-density correlation function as

〈ρ̂(x)ρ̂(0)〉 − ρ2
0 = − K

2πx2
+ const. × cos(2πρ0x)

|x |2K . (3.17)

We will study how these critical behavior are modified due to measurement backac-
tion in Sect. 3.2.

Brief summary of the sine-Gordon model

Underlying microscopic interactions in 1D systems can generate additional pertur-
bations on top of the TLL. This is the case, for example, in spinful fermions or
a 1D Bose gas subject to a spatially periodic potential.2 To discuss effects of the
perturbations to the TLL, let us start consider a Hamiltonian

Ĥ = Ĥ0 +
∫

dxV (φ̂), (3.18)

where V (φ̂) is a potential term of the field φ̂ satisfying the condition3

V (φ̂) = V (φ̂ + 2π). (3.19)

1A more formal derivation can be found, for example, in Ref. [77].
2We will discuss later the latter example in detail to propose a possible experimental test of our
theoretical results.
3Note that the original bosonic or fermionic field operator 
̂(x) ∝ √

ρ̂(x) is invariant under φ̂(x) →
φ̂(x) + 2π as inferred from Eq. (3.15). The resulting effective field theory should also satisfy this
symmetry.
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It can be expanded as

V (φ̂) = 1

π

∞∑

n=1

[
αc
n cos(nφ̂) + αs

n sin(nφ̂)
]
, (3.20)

where αc,s
n are real parameters. We can study how the perturbations affect the low-

energy behavior on the basis of the renormalization group (RG) analysis.
The basic idea of the RG analysis is as follows. We start from an effective field

theory with couplings α(	) and the TLL parameter K (	) at a momentum cutoff
	. The goal of the RG analysis is to find a theory having an equivalent low-energy
(i.e., long-distance) behavior but at a lower momentum cutoff 	̃ < 	 (i.e., a larger
distance cutoff ã > a) with the renormalized coupling α(	̃) and the TLL parameter
K (	̃). To achieve this, we integrate out high-momentum degrees of freedom which
are irrelevant to the low-energy behavior and examine howcouplingsα(	) and K (	)

alter as we renormalize a cutoff scale 	. A set of differential equations that govern
these changes of couplings are known as the RG equations. They define the flows
of couplings as functions of a cutoff scale 	, which are known as the RG flows.
Physically, 	-dependent couplings α(	) and the TLL parameter K (	) characterize
their renormalized values at an energy scale 	, or equivalently, at a distance scale
a = 1/	. We remark that the aim of RG analysis is not to solve the entire problem of
the model, but to determine its low-energy properties by mapping the original model
to a (possibly) simpler problem while keeping the low-energy physics unaltered.

Let us consider how the potential (3.20) renormalizes along the RG flows. Ana-
lyzing the scaling dimensions of the couplings, we can obtain their RG equations at
the leading order by

dgc,sn

dl
=
(
2 − n2K

4

)
gc,sn , (3.21)

where l = − ln(	/	0) is the logarithmic RG scale with 	0 being an initial cutoff
and we rescale the couplings αc,s

n by introducing the dimensionless parameters gc,sn
as

gc,sn = αc,s
n

�v	2
. (3.22)

Equation (3.21) clearly shows that a perturbation is more irrelevant for a higher-order
n. It suffices to consider the most relevant contribution that is the lowest-order m for
which the coefficients are nonzero, i.e., gc,sm �= 0 and gc,sn = 0 for n < m. We then
rescale the field operators and the TLL parameter as (cf. Eqs. (3.6) and (3.7))

φ̂ → (m/2)φ̂, θ̂ → (2/m)θ̂ , K → (m2/4)K . (3.23)

The resulting effective field theory is
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Ĥ0 + 1

π

∫
dx
[
αc cos(2φ̂) + αs sin(2φ̂)

]
. (3.24)

Finally, employing the translational invariance φ̂ → φ̂ − π/8, we arrive at the sine-
Gordon model:

ĤsG =
∫

dx

{
�v

2π

[
K
(
∂x θ̂

)2 + 1

K

(
∂x φ̂

)2]+ α

π
cos(2φ̂)

}
. (3.25)

It is well known that the RG equations of K and g = α/(�v	2) in the sine-Gordon
model are given by (up to the third order in g) [78]

dK

dl
= −g2K 2,

dg

dl
= (2 − K )g + 5g3. (3.26)

Figure3.2 shows the RG phase diagram of the sine-Gordon model. In the regime
K < 2, the potential perturbation is relevant and its strength g flows into the strong-
coupling limit, suppressing the fluctuations of the field φ̂ by the cosine potential
cos(2φ̂). In this limit, the phase φ̂ is locked and the system exhibits the gapped
phase (blue regon). For example, in a 1D Bose gas subject to a periodic potential,
the locking indicates the suppression of density fluctuations and thus the gapped
phase corresponds to theMott insulator (MI) phase as we will discuss later. From the
equivalence between a 1D quantum system and a 2D classical system, we can also
view this locking as the condensation of bounded pairs of the vortex and antivortex

Fig. 3.2 Renormalization group flows of the sine-Gordon model. When the Tomonaga-Luttinger
liquid (TLL) parameter K satisfies K < 2, the potential perturbation (whose strength is denoted by
g) is relevant and the system flows into the gapped phase (blue region). In contrast, for K > 2, the
perturbation is irrelevant and the low-energy behavior is described by the critical phase known as the
Tomonaga-Luttinger liquid (red region). In between these two phases, there exists the Berezinskii-
Kosterlitz-Thouless (BKT) transition. As for a one-dimensional bosonic system to be discussed
later, the gapped phase is the Mott insulator (MI) phase
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that are topological excitations in the phase field φ. In the other regime K ≥ 2,
the perturbation is irrelevant or marginal and its strength g flows into zero (red
region). The effect of the perturbation appears as a renormalization of the value of the
TLL parameter; an addition of g effectively decreases K , ending up a renormalized
value K ∗. The long-distance critical behavior is thus described by the TLL with this
renormalized TLL parameter K ∗. Physically, a decrease of K along the RG flows
indicates the degradation of superfluid correlations at a large distance (cf. Eq. (3.16)).
In between the two phases, the system exhibits the BKT transition. In the classical
picture, this transition can be viewed as the proliferation of the vortex-antivortex
pairs.

Relevant non-Hermitian perturbations

We are interested in a non-Hermitian perturbation to the TLLHamiltonian, where the
non-Hermiticity originates from measurement backaction due to continuous mon-
itoring (see the introduction in this Chapter). Our aim is to understand how such
non-Hermiticity alters the quantum critical behavior of 1D many-body systems. To
achieve this aim, we first have to identify what types of non-Hermitian perturba-
tions are relevant in the RG analysis, which can be done by checking the scaling
dimensions of the perturbations in the same manner as in the Hermitian case.

There are two types of the possible relevant perturbations. The first one is the
quadratic term:

�̂0 ∝ −i
∫

dx
(
∂x φ̂

)2
, (3.27)

which has the same scaling dimension as in the quadratic terms of the ordinary TLL.
This term will effectively make the TLL parameter K complex and thus modify the
critical exponents as we detail in the next section. Physically, �̂0 can arise as the
backaction from a density measurement or a two-body loss process of particles.

The second possible perturbation is the potential term

�̂V ∝ −i
∫

dx cos
(
2φ̂(x) + δ

)
, (3.28)

where δ is a real parameter and quantifies the phase difference of the imaginary poten-
tial compared with a real relevant potential cos(2φ̂) in the sine-Gordon model (3.25).
Such a perturbation physically originates from, for example, a dissipative potential
inducing a one-body loss of particles. For δ �= ±π/2, the imaginary potential term
�̂V can make K complex along the RG flows. This leads to similar effects as in the
quadratic perturbation �̂0. To identify effects unique to the non-Hermitian potential
term �̂V , we focus on the case of δ = ±π/2 at which K remains to be real along RG
flows. From Eqs. (3.25) and (3.28), this condition leads to the following generalized
sine-Gordon model:

Ĥ = ĤsG + �̂V =
∫

dx

{
�v

2π

[
K
(
∂x θ̂

)2 + 1

K

(
∂x φ̂

)2]+ αr

π
cos(2φ̂) − iαi

π
sin(2φ̂)

}
, (3.29)
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whereαr (αi) is the strength of a real (imaginary) potential perturbation andwe choose
the sign δ = −π/2 without loss of generality. We note that this model satisfies the
combination of the parity symmetry (P̂) and the time-reversal symmetry (T̂ ):

P̂ T̂ Ĥ
(
P̂ T̂

)−1 = Ĥ . (3.30)

This follows from the fact that P̂ reverses the sign of φ̂ and that T̂ is an antiunitary
operator4

P̂φ̂ P̂−1 = −φ̂, T̂ φ̂T̂−1 = φ̂, (3.31)

T̂ i T̂−1 = −i. (3.32)

The parity-time (PT) symmetric non-Hermitian systems can exhibit an exotic real-
to-complex spectrum transition that accompanies the exceptional point at which the
Hamiltonian is not diagonalizable. Such a transition has no counterpart in Hermitian
systems. While it has been recognized that the exceptional point and the spectrum
transition can induce interesting one-body phenomena especially in the context of
classical optics [58, 59], we will show that the non-Hermiticity can lead to novel
types of many-body phenomena such as the emergence of new RG fixed points and
the exotic RG flows violating the c-theorem as detailed in Sect. 3.3.

3.2 Backaction on Quantum Criticality I: The Quadratic
Term

3.2.1 Model

In this section, we analyze the effect of the non-Hermitian quadratic perturbation

�̂0 = −iγ
∫

dx
(
∂x φ̂

)2
(3.33)

to the 1D critical behavior. Physically, such a contribution can appear in systems
accompanying a two-body loss of particles or those subject to a density measurement
as we will discuss in Sect. 3.2.3. It is useful to rewrite the TLL Hamiltonian as

Ĥ0 = �

2π

∫
dx

[
vJ
(
∂x θ̂

)2 + vN
(
∂x φ̂

)2]
, (3.34)

where the phase stiffness vJ and the density stiffness vN are defined as

4The odd parity of φ̂ can be inferred from the fact that ∂x φ̂ has the same parity as in the density
operator ρ̂(x) which is a scalar (see Eq. (3.15)).
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vJ = vK , (3.35)

vN = v

K
. (3.36)

The role of the quadratic perturbation �̂0 is to renormalize the density stiffness vN
to a complex value ṽN e−iδγ :

Ĥeff = Ĥ0 + �̂0 = �

2π

∫
dx

[
vJ
(
∂x θ̂

)2 + ṽN e
−iδγ

(
∂x φ̂

)2]
, (3.37)

where ṽN (γ ) > 0 and 0 ≤ δγ < π/2 are the real parameters depending on γ . Since
the effective Hamiltonian (3.37) is quadratic, it is still solvable and we can obtain
its exact complex spectrum. To achieve this, we do the mode expansions, reduce
the problem to that of a set of complex harmonic potentials [79, 80], and obtain the
exact effective ground state |
g,γ 〉 having the lowest energy, i.e., the lowest real part
of an eigenvalue. We will show that the effective ground state also has the longest
lifetime among all the eigenstates, indicating that it survives longest in the non-
Hermitian evolution. If we take the limit of vanishing measurement strength γ → 0,
the effective ground state |
g,γ 〉 reproduces the known ground state of the original
TLL Hamiltonian. Calculating the correlation functions with respect to the effective
ground state |
g,γ 〉, we show that it exhibits unusual critical behavior influenced by
measurement.

Let us start from the mode expansions of the fields:

φ̂(x) = −
∑

k �=0

i · sgn(k)
√

π K̃γ

2L|k|e
−a|k|/2−ikx (b̂†k + b̂−k), (3.38)

θ̂ (x) =
∑

k �=0

i

√
π

2K̃γ L|k|e
−a|k|/2−ikx (b̂†k − b̂−k), (3.39)

where we introduce L as the size of a system and K̃γ as the following modified TLL
parameter

K̃γ ≡
√

vJ
ṽN

, (3.40)

b̂k (b̂
†
k ) is an annihilation (creation) operator associated with a mode having momen-

tum k = 2πm/L (m = ±1,±2, . . .), and a → +0 is a short-distance cutoff. The
effective Hamiltonian (3.37) is then (aside an irrelevant constant) rewritten as

Ĥeff = �ṽ
∑

k>0

k

[
e−iδγ + 1

2
(b̂†k b̂k + b̂†−k b̂−k) + e−iδγ − 1

2
(b̂k b̂−k + b̂†k b̂

†
−k)

]
, (3.41)
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where we introduce ṽ ≡ √
vJ ṽN . Introducing the position and momentum operators

x̂k and p̂k as

b̂k = x̂k + i p̂k√
2

, b̂†k = x̂k − i p̂k√
2

, (3.42)

we can express Eq. (3.41) as

Ĥeff = �ṽ
∑

k>0

k

[
e−iδγ + 1

4
(x̂2k + p̂2k + x̂2−k + p̂2−k ) + e−iδγ − 1

2
(x̂k x̂−k − p̂k p̂−k )

]
. (3.43)

Furthermore, we use the center-of-mass x̂k,+ ( p̂k,+) and relative x̂k,− ( p̂k,−) coordi-
nates (momenta) with modes ±k:

x̂k = x̂k,+ + x̂k,−√
2

, x̂−k = x̂k,+ − x̂k,−√
2

, (3.44)

p̂k = p̂k,+ + p̂k,−√
2

, p̂−k = p̂k,+ − p̂k,−√
2

, (3.45)

where we choose k to be a positive discrete momentum, i.e., k = 2πm/L with m =
1, 2, . . .. Using Eqs. (3.44) and (3.45) to rewrite Eq. (3.43), we obtain

Ĥeff = �ṽ
∑

k>0

k

(
e−iδγ

2
x̂2k,+ + 1

2
p̂2k,+ + 1

2
x̂2k,− + e−iδγ

2
p̂2k,−

)
. (3.46)

This Hamiltonian is nothing but a set of non-Hermitian harmonic oscillators [79,
80]. To diagonalize it, we choose the coherent-state basis |{xk,+, pk,−}〉, where x̂k,+
and p̂k,− are diagonalized such that φ̂(x) becomes a c-number (cf. Eq. (3.51) below).
We can obtain the effective ground-state wavefunction |
g,γ 〉 as

〈{xk,+, pk,−}|
g,γ 〉 ∝ exp

[
−e−iδγ /2

2

∑

k>0

(x2k,+ + p2k,−)

]
. (3.47)

This state is an extension of the original ground-state wavefunction [81] to the non-
Hermitian TLL. The full complex spectrum is given by

�ṽe−iδγ /2
∑

k>0

k(nk,+ + nk,− + 1), (3.48)

where nk,± are nonnegative integers representing quantum numbers in the modes
(k,±). From the condition 0 ≤ δγ < π/2, the energies are bounded from below
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and the ground-state wavefunction can be normalized.5 We remark that the effective
ground state (nk,± = 0) with the lowest energy also has the minimal imaginary part,
i.e., it survives the longest in the non-Hermitian evolution.

Effective parity-time symmetry in the non-Hermitian TLL

We note that there exists a “hidden” parity-time symmetry in the Hamiltonian (3.37).
To show this, we rewrite the Hamiltonian as

Ĥeff = e−iδγ /2 Ĥ ′
eff , Ĥ ′

eff = �

2π

∫
dx

[
vJ e

iδγ /2
(
∂x θ̂

)2 + ṽN e
−iδγ /2

(
∂x φ̂

)2]
, (3.49)

where Ĥ ′
eff is invariant under the combination of the time-reversal operation and the

following parity transformation6:

θ̂ →
√
ṽN
vJ

φ̂, φ̂ →
√

vJ
ṽN

θ̂ . (3.50)

Thus, the original Hamiltonian (3.37) satisfies the parity-time symmetry aside a
constant complex factor e−iδγ /2. In fact, the spectrum of the parity-time-symmetric
part Ĥ ′

eff is entirely real (i.e., the parity-time symmetry is unbroken) for any δγ (cf.
Eq. (3.48)).

3.2.2 Correlation Functions: Bifurcating Critical Exponents

We next analyze the critical behavior of the effective ground state that is influenced
by the measurement backaction.

Calculation of the correlation function Cφ(x)

Let us calculate the correlation function Cφ

p=2(x − y) = 〈e2i φ̂(x)e−2i φ̂(y)〉, which can
be related to the density-density fluctuations for the case of a 1D Bose gas (see
Eq. (3.17)).Here,wedenote 〈· · · 〉 as the expectationvaluewith respect to the effective
ground state |
g,γ 〉. In terms of the variables x̂k,+ and p̂k,−, we can rewrite φ̂(x) as

φ̂(x) = i
∑

k>0

√
π K̃γ

2Lk

[
(x̂k,+ + i p̂k,−)eikx − (x̂k,+ − i p̂k,−)e−ikx

]
. (3.51)

5Although the wavefunction (3.47) remains normalizable for π/2 ≤ δγ < π , the full spectrum
including the zero-mode contributions is no longer bounded from below in this regime. We also
remark that if δγ ≥ π , the spectrum is not bounded from below and there are no eigenstates having
discrete eigenvalues since the wavefunction cannot be normalized.
6Here by a parity transformation, we mean that its square reduces to the identity operator P̂2 = Î .
A spatial parity transformation against a certain plane is just its special example.
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Let |{φk}〉 be an eigenstate of φ̂(x) (0 ≤ x < L):

φ̂(x)|{φk}〉 = φ(x)|{φk}〉, (3.52)

φ(x) =
√

π

L

∑

k>0

(
φke

ikx + φ∗
k e

−ikx
)
, (3.53)

where φk satisfies

i(xk,+ + i pk,−) =
√

2k

K̃γ

φk . (3.54)

The wavefunction of the ground state (3.47) can be rewritten as

〈{φk}|
g,γ 〉 = 1√N exp

(
−e−iδγ /2

K̃γ

∑

k>0

k|φk |2
)

, (3.55)

where N is a normalization constant. We can now express the correlation function
Cφ

p=2(x − y) by

〈e2i φ̂(x)e−2i φ̂(y)〉 = 1

N
∫

DφDφ∗

×exp

{∑

k>0

[
−2k cos(δγ /2)

K̃γ

|φk |2+2i

√
π

L
φk(e

ikx −eiky)+2i

√
π

L
φ∗
k (e

−ikx −e−iky)

]}

= exp

[
− K̃γ

cos(δγ /2)

∑

k>0

k1
k

(2 − eikr − e−ikr )

]
, (3.56)

where we do the Gaussian integrations to obtain the last expression, and define
k1 ≡ 2π/L and r ≡ x − y. The sum over k > 0 can be taken with a regularization
trick:

∑

k>0

k1e−ak

k
(2 − eikr − e−ikr ) → −2 ln

(
ak1

2 sin(k1r/2)

)
, (3.57)

where we use ak1 � 1. The resulting critical behavior is

〈e2i φ̂(x)e−2i φ̂(y)〉 =
(

a

(L/π) sin (πr/L)

) 2K̃γ

cos(δγ /2)

→
(a
r

)2Kφ

, (3.58)

where we use L � r and introduce the critical exponent Kφ by

Kφ(γ ) = K̃γ

cos
(

δγ

2

) . (3.59)
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Calculation of the correlation function Cθ (x)

We next calculate the correlation function Cθ
p=1(x − y) = 〈ei θ̂ (x)e−i θ̂ (y)〉, which can

be related to the one-particle correlation for the case of a 1DBose gas (see Eq. (3.16)).
We expand the operator θ̂ as

θ̂ (x) = −i
∑

k>0

√
π

2K̃γ Lk

[
i p̂k,+(eikx + e−ikx ) + x̂k,−(eikx − e−ikx )

]
. (3.60)

This acts as a shift operator on an eigenstate of x̂k,+ and p̂k,−:

ei θ̂ (x)|{xk,+, pk,−}〉=
∣∣∣∣

{
xk,+ − i

√
π

2K̃γ Lk
(eikx +e−ikx ), pk,−+

√
π

2K̃γ Lk
(eikx −e−ikx )

}〉
. (3.61)

From Eq. (3.54), we obtain

ei θ̂ (x)|{φk}〉 =
∣∣∣∣

{
φk − i

k

√
π

L
e−ikx

}〉
. (3.62)

The correlation function can now be calculated as

〈ei θ̂ (x)e−i θ̂ (y)〉 = 1

N
∫
DφDφ∗ exp

[
− 1

K̃γ

∑

k>0

k

(
eiδγ

∣∣∣φk − i

k

√
π

L
e−ikx

∣∣∣
2 + e−iδγ

∣∣∣φk − i

k

√
π

L
e−iky

∣∣∣
2
)]

= exp

⎡

⎣− π

2K̃γ L cos(δγ /2)

∑

k>0

1

k
(2 − eikr − e−ikr )

⎤

⎦ =
(

a

(L/π) sin (πr/L)

) 1
2K̃γ cos(δγ /2)

→
( a
r

)1/(2Kθ )
, (3.63)

where we use L � r and define the critical exponent Kθ as

Kθ (γ ) = K̃γ cos

(
δγ

2

)
. (3.64)

Physical consequences: shifts and bifurcation of critical exponents

We now discuss physical consequences of the measurement backaction for the case
of a 1D Bose gas. As shown above, the backaction leads to the two TLL parameters
Kθ,φ in Eqs. (3.64) and (3.59), which describe the critical behavior of the one-particle
correlation and the density-density correlation, respectively:

〈
̂†(r)
̂(0)〉 ∝
(
1

r

)1/(2Kθ )

, (3.65)

〈ρ̂(r)ρ̂(0)〉 − ρ2
0 = − Kφ

2π2r2
+ const. × cos(2πρ0r)

r2Kφ
. (3.66)
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The emergence of the two characteristic parameters Kθ and Kφ signifies the critical
behavior beyond the conventional TLL class, in which the single parameter K char-
acterizes the critical behavior (see Eqs. (3.16) and (3.17)). Thus, the non-Hermiticity
bifurcates the single critical exponent into the two characterized by Kθ and Kφ . In 1D
ultracold bosons, the critical exponent Kθ can be found by utilizing interferometric
techniques [82, 83], while Kφ can be measured by in-situ observations of density
fluctuations [84].

3.2.3 Realization in a 1D Ultracold Bose Gas
with a Two-Body Loss

As a concrete microscopic physical realization of the non-Hermitian TLL, we here
discuss a 1D interacting Bose gas subject to a two-body loss process. The effective
non-Hermitian Hamiltonian is the following generalized Lieb-Liniger Hamiltonian:

Ĥ =
∫

dx

[
− �

2

2m

̂†(x)

∂2

∂x2

̂(x) + g − iγ

2

̂†(x)
̂†(x)
̂(x)
̂(x)

]
, (3.67)

where m is the atomic mass and 
̂(x) is the bosonic field operator. The strength
g > 0 of a repulsive contact interaction is given by g = 2�ωar , where ω is the
trap frequency in the transverse direction, and ar is the elastic scattering length
between atoms. The backaction froma two-body loss processmodifies the interaction
parameter as g → g − iγ in the Lieb-Liniger Hamiltonian with γ = 2�ωai being
the measurement strength determined from the inelastic two-body scattering length
ai [85, 86]. The low-energy critical behavior of Eq. (3.67) can be described by the
effective non-Hermitian TLL Hamiltonian in Eq. (3.37). Physically, the field θ̂ in the
TLLHamiltonian is related to the phase of the bosonic field operator as in Eq. (3.11),
while ∂x φ̂ is related to the density fluctuations as in Eq. (3.15).

In the original TLL, correlation functions decay algebraically with exponents
determined by the single TLL parameter K = √

vJ/vN . We can relate the parameters
vJ and vN in the effective field theory to the microscopic parameters in the original
Lieb-Liniger Hamiltonian. Firstly, the Galilean invariance ensures that vJ can be
obtained as [87]

vJ = �πρ0

m
. (3.68)

Secondly, vN takes the following asymptotic forms in the weakly and strongly inter-
acting regimes [88, 89]:

vN =
{

vJ u
π2

(
1 −

√
u

2π

)
for u � 1;

vJ
(
1 − 8

u + O
(
1
u2
))

for u � 1,
(3.69)
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where we introduce the normalized (dimensionless) strength of the interaction

u = mg

�2ρ0
. (3.70)

In contrast, in the presence of the two-body loss process, the backaction leads to
the change g → g − iγ and, accordingly, we analytically continue Eq. (3.69) by
replacing u with a complex value u(1 − ig/γ ) = u(1 − iar/ai). This changes vN
to ṽN (γ )e−iδγ , where ṽN and δγ are the real parameters determined from γ . These
relations fix the correspondence between the microscopic parametersm, ρ0, g and γ

in the non-Hermitian Lieb-Liniger Hamiltonian (3.67) and the effective parameters
vJ and ṽN e−iδγ in the non-Hermitian TLL in Eq. (3.37). Figure3.3 plots Kφ,θ against
the dimensionless measurement strength γ /g = ai/ar . The decrease in Kφ,θ can
be interpreted as a manifestation of the continuous quantum Zeno effect [90, 91],
which effectively enhances the repulsive interactions [86]. The split between the two
characteristic parameters Kφ,θ is caused by the additional degree of freedom δγ in the
parameter space of the effective Hamiltonian (3.37). We remark that these features
should also appear in other 1D critical systems than the 1D Bose gas discussed here
in view of the universality of the effective field theory.

(a) (b)

Fig. 3.3 Shifts and bifurcation of the effective TLL parameters Kφ (red solid curve) and Kθ (blue
dashed curve). We set the interaction strength to be a u = 0.01 and b u = 10.0. Reproduced from
Fig. 4 of Ref. [10]. Copyright © 2016 by the American Physical Society
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3.3 Backaction on Quantum Criticality II: The Potential
Term

3.3.1 Model and Its Symmetry

We next consider the other relevant non-Hermitian perturbation, which is the follow-
ing imaginary potential term

�̂V = − iαi

π

∫
dx sin(2φ̂). (3.71)

Physically, this contribution appears, for example, when the system is subject to a
spatially modulated dissipative potential inducing a one-body loss as we will detai
in Sect. 3.3.5. The resulting Hamiltonian considered in this section is

Ĥ =
∫

dx

{
�v

2π

[
K (∂x θ̂ )2 + 1

K
(∂x φ̂)2

]
+ αr

π
cos(2φ̂) − iαi

π
sin(2φ̂)

}
. (3.72)

Without the imaginary potential, this Hamiltonian reduces to the sine-Gordon
model (3.25), which exhibits the celebrated BKT transition between the TLL and
a gapped phase (see the RG phase diagram in Fig. 3.2). For example, as for a 1D
Bose gas, this transition corresponds to a superfluid-to-Mott-insulator transition [92].
We aim to extend this paradigm by studying the generalized sine-Gordon Hamilto-
nian (3.72) that includes both the real and imaginary potentials. When the real poten-
tial is relevant, it suppresses the fluctuations of φ̂, stabilizing a non-critical, gapped
phase. In contrast, we find that the imaginary potential has an opposite effect; when
it becomes relevant, it facilitates the fluctuations of φ̂ and enhances correlations in
the conjugate field θ̂ . It is this competition between the real and imaginary potentials
that makes the present effective field theory particularly rich and nontrivial.7

The field theory (3.72) satisfies the parity-time (PT) symmetry (cf. Eq. (3.30)). The
PT symmetry is said to be unbroken if every eigenstate of the Hamiltonian satisfies
the PT symmetry; then, the entire spectrum is real even though the Hamiltonian is not
Hermitian. The PT symmetry is said to be spontaneously broken if some eigenstates
of the Hamiltonian are not the eigenstates of the PT operator; then, some pairs of
eigenvalues become complex conjugate to each other. This real-to-complex spectral
transition is often called the PT transition. The transition is typically accompanied
by the coalescence of eigenstates and that of the corresponding eigenvalues at an
exceptional point [60] in the discrete spectrum or the spectral singularity [61] in the
continuum spectrum.

7It is worthwhile to recall that the phase difference between the real and imaginary potentials in
Eq. (3.72) is chosen so that the TLL parameter K remains to be real along the RG flows (see
discussions below Eq. (3.28)), as we have already clarified the physical consequences of the com-
plexification of K in the previous subsection.
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In our many-body Hamiltonian (3.72), if the depth of the real potential exceeds
that of the imaginary potential (αr > αi), Ĥ has an entirely real spectrum, i.e, the PT
symmetry is unbroken. This can be proved by the theorem [93] which states that the
spectrum is real if and only if there exists an operator Ô satisfying

Ô−1 Ĥ Ô = Ĥ ′, (3.73)

where Ĥ ′ is a Hermitian operator. We can explicitly construct such an operator for
αr > αi as

Ô = e−ηθ̂0/2, η = arctanh(αi/αr), (3.74)

where θ̂0 is a constant part of the field θ̂ , which shifts its conjugate field as φ̂ →
φ̂ − iη. Then, the potential term in Ĥ is transformed to

Ô−1

[
αr

π
cos(2φ̂) − iαi

π
sin(2φ̂)

]
Ô =

√
α2
r − α2

i

π

∫
dx cos(2φ̂) (3.75)

and thus the field theory reduces to the ordinary sine-Gordon Hamiltonian. The
divergence of η at αr = αi signals the spontaneous breaking of the PT symmetry
[94]. When αi > αr, some of excited eigenstates of the Hamiltonian are no longer
eigenstates of the PT operator, generating complex conjugate pairs of eigenvalues.

The main findings we present in this section are the following. First, at the thresh-
old of the PT transition, we find that the spectral singularity and quantum criticality
conspire to yield an unconventional RG fixed point, which has no counterpart in
Hermitian systems. Second, when an imaginary potential becomes relevant, we find
that a local gain-loss structure triggers an enhancement of superfluid correlation that
is facilitated by anomalous RG flows violating the c-theorem [95]. This makes a
sharp contrast to the suppression of superfluid correlation due to the real potential as
expected in the conventional BKT transition. In the following subsections, we show
these results based on the RG analyses and numerical calculations using the exact
diagonalization and the infinite time-evolving block decimation (iTEBD) algorithm.

3.3.2 Perturbative Renormalization Group Analysis

To reveal the universal behavior of the effective Hamiltonian Ĥ , we first perform
a perturbative RG analysis to obtain the following set of flow equations which are
valid up to the third order in the couplings:

dK

dl
= − (

g2r − g2i
)
K 2, (3.76)
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dgr
dl

= (2 − K )gr + 5g3r − 5g2i gr, (3.77)

dgi
dl

= (2 − K )gi − 5g3i + 5g2r gi, (3.78)

where gr,i are the dimensionless couplings defined as

gr,i = αr,i

�v	2
. (3.79)

The velocity v stays constant to all orders in gr,i because of the Lorentz invariance
of the theory. The RG equations can be obtained by deriving the RG equations
for the Hermitian potential (αr/π) cos(2φ̂) + (αi/π) sin(2φ̂) and then analytically
continuing them by replacing αi → −iαi. The first step can be done by following the
standard procedure [78] of the perturbative RG analysis for the ordinary sine-Gordon
model (cf. Eq. (3.26)). The vanishing of the terms proportional to gi, g3i and gig2r in
the RG equation (3.77) of gr can be understood from the different parity of cos(2φ̂)

and sin(2φ̂) potentials (the similar arguments also hold in the RG equation (3.78)
of gi).

The RG equations can be solved analytically for small gr,i and δ ≡ K − 2 by
noting the following two quantities

C1 = gi
gr

, (3.80)

C2 = δ2 − 4(g2r − g2i ) − 10δ(g2r − g2i ) + δ3, (3.81)

which are conserved up to the third order of gr,i and δ. The resulting three-dimensional
RG phase diagram is shown in Fig. 3.4a. Its bottom plain at gi = 0 gives the two-
dimensional phase diagram of the conventional sine-Gordon model (see Fig. 3.2).
Let us explain each regime in the phase diagram.

(i) C1 < 1
When PT symmetry is unbroken, i.e., gi < gr (or equivalently,C1 < 1), the spectrum
is equivalent to that of the original sine-Gordon model with a modified parameter
(cf. Eq. (3.75)). Thus, the conventional RG flow diagram is reproduced (compare
Fig. 3.4bwith Fig. 3.2). TheBKTboundary corresponds to the curved surface defined
by C2 = 0 with δ > 0. We note that the critical behavior in the PT unbroken regime
is also the same as in the original sine-Gordon model because the operator Ô only
changes the zero modes of φ̂, which do not contribute to the ground-state critical
properties. As the non-Hermiticity signifies the measurement backaction, the transi-
tion across the surface C2 = 0 with δ > 0 induced by increasing gi may be regarded
as measurement-induced.

(ii) C1 = 1
A new type of transition emerges on the PT transition plane, which is defined by
gi = gr in the strongly correlated regime K < 2 (or equivalently, on the planeC1 = 1
with δ < 0). The BKT and PT phase boundaries merge on the line defined by K = 2



50 3 Quantum Critical Phenomena

Fig. 3.4 Renormalization group (RG) phase diagram and flows in the generalized sine-Gordon
model. a The three-dimensional phase diagram in (K , gr, gi), where K is the TLL parameter and gr
(gi) describes the depth of the real (imaginary) potential. The Tomonaga-Luttinger liquid (TLL) and
the Mott insulator (MI) phases are separated by the curved surface of the Berezinskii-Kosterlitz-
Thouless (BKT) transition in K > 2 and the plain surface of the PT transition (red open circle)
in K < 2. An exotic renormalization group (RG) fixed point lies on the critical line with K = 2
and gr = gi, which we term as a spectral singular critical point (SSCP). b RG flows in a PT-
unbroken region (gi < gr) (compare it with Fig. 3.2). c RG flows on the two phase boundaries.
d Unconventional semicircular RG flows in a PT-broken region (gi > gr), which violate the c-
theorem [95]. The increase of K along the RG flows indicates the anomalous enhancement of
the superfluid correlation and significant changes in critical exponents in a large-distance region.
Reproduced from Fig. 1 of Ref. [23] by the author licensed under a Creative Commons Attribution
4.0 International License

and gi = gr (i.e., the line C2 = 0 and C1 = 1), which is constituted from a set of
RG fixed points (black thick line in Fig. 3.4c). On the PT threshold plane (C1 = 1),
the spectral singularity [61] arises where two eigenvalues as well as their eigenstates
coalesce in the continuum spectrum. Our finding thus indicates that in many-body
systems the coexistence of the spectral singularity and the quantum criticality can
result in exotic RG fixed points unique to non-Hermitian systems. We remark that
the quantum field theory on this scale invariant line K = 2 and gi = gr is known
as (a special type of) quantum Liouville theory [96], which has recently attracted
much attention in high-energy physics. In this context, it is remarkable that Ref. [97]
has demonstrated that the scale-invariant theory at K = 2 and gi = gr is indeed a
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new universality class unique to non-Hermitian systems by explicitly calculating its
three-point correlation functions.

(iii) C1 > 1
Unconventional RG flows emerge when the PT symmetry is broken (gi > gr or
equivalentlyC1 > 1). They start from the K < 2 regime and initially lead to increases
of gr,i and K . After entering the K > 2 regime, the flow winds and converges to the
fixed line with gr,i = 0 (see Fig. 3.4d), which corresponds to the TLL phase with
K > 2. Physically, this significant increase in the TLL parameter K along the RG
flows indicates that the superfluid correlation decays more slowly at a larger distance
(see Eq. (3.16)). This enhancement of superfluid correlation should be considered
as anomalous because, in the conventional BKT paradigm, a real potential has a
completely opposite effect of destroying the criticality and stabilizing the gapped
MI phase for K < 2 (see Fig. 3.2). It is particularly notable that the semicircular RG
flows permit a substantial increase of the TLL parameter K even if the potential
strength gi is initially very small. This indicates that even a very weak measurement
backaction can significantly alter the underlying critical behavior in a large-distance
regime.

We remark that these RG flows violate the c-theorem, which states that in (Hermi-
tian) conformal field theories the central charge cmust monotonically decrease along
RG flows when a relevant perturbation is added [95]. In the anomalous RG flows
found here, the system remains in the TLL phase and thus the central charge remains
c = 1 even though the relevant perturbation is added. It is worthwhile to mention
that, while the c-theorem has recently been generalized to non-Hermitian systems
[98], the unbroken PT symmetry is required in order to ensure the presence of a
monotonically decreasing positive-definite function along the RG flows. Our finding
of the violation of the c-theorem only in the PT broken regime is consistent with this
result. We note that similar anomalous RG flows have recently been reported also in
the non-Hermitian Kondo models [99, 100], where the authors found the violation
of the g-theorem [101] (i.e., the monotonic decrease of a ground-state degeneracy g
along the RG flows).

3.3.3 Numerical Demonstration in a Non-Hermitian
Spin-Chain Model

To numerically test theRGpredictions discussed above,we introduce a latticeHamil-
tonian

ĤL =
N∑

m=1

[
− (

J + (−1)miγ
) (

Ŝxm Ŝxm+1 + Ŝ ym Ŝym+1

)
+ �Ŝzm Ŝzm+1 + (−1)mhs Ŝ

z
m

]
, (3.82)

whose low-energy behavior is described by the generalized sine-Gordon model Ĥ
in Eq. (3.72). Here Ŝx,y,z

m are the spin-1/2 operators at site m and the parameters
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(a) (b)

Fig. 3.5 a Phase diagram and b typical finite-size spectrum of the non-Hermitian spin-chain model
whose low-energy effective field theory coincides with the generalized sine-Gordonmodel. In panel
(a), the Tomonaga-Luttinger liquid (TLL) and Mott insulator (MI) phases are separated by the PT-
symmetry breaking (red line with filled triangles) and the Berezinskii-Kosterlitz-Thouless (BKT)
transition (blue curvewithfilled circles). Themergingpoint (open circle) of the twophase boundaries
corresponds to the spectral singular critical point. In panel (b), a typical low-energy excitation
spectrum of the non-Hermitian spin-chain model is plotted. We show the three lowest levels in the
Sz = 0 sector (red, green, and yellow curves from the lowest), and the lowest excitation energy in
the Sz = ±4 sector (blue curve), where we denote Sz = ∑N

m=1 Ŝ
z
m as a total magnetization. The

energy difference δE between the two coalescing levels (e.g., red and green) obeys the square-root
scaling (inset) and closes at the PT-symmetry breaking point. We determine the BKT transition
point from a crossing point of appropriate energy levels (red and blue). We use the staggered field
hs = 0.1 for both panels (a) and (b). In panel (a), we determine the phase boundaries by performing
the finite-size scaling analysis (see panels (d) and (e) in Fig. 3.6), while the data shown in panel (b)
are the values for N = 16 and −� = 0.735. Note that we use the unit of J = 1. Reproduced from
Fig. 2 of Ref. [23] by the author licensed under a Creative Commons Attribution 4.0 International
License

(−�, hs, γ ) correspond to the ones (K , gr, gi) in the effective field theory (3.72).
We have used this model to numerically test the RG phase diagram in Fig. 3.4a and
the anomalous RG flows in Fig. 3.4d. The obtained results are consistent with the
RG predictions as shown in the determined phase diagram in Fig. 3.5a and in the
observed enhancement of the TLL parameter in a large-distance regime in Fig. 3.7b.
Our numerical results thus demonstrate that the RG analysis is indeed instrumental
to study critical properties of a non-Hermitian many-body system. Below we discuss
how we obtain these results in detail.

(i) Identifying the BKT transition point
Todetermine theBKT transition point, we calculate the exact finite-size spectrumand
find a crossing of low-energy levels having appropriate quantumnumbers. This can be
done by employing the so-called level spectroscopymethod [102, 103]. The key idea
of this method is to relate the low-energy spectrum to the running coupling constants
that appear in the RG equations. Under the periodic boundary condition, the lattice



3.3 Backaction on Quantum Criticality II: The Potential Term 53

(a) (b)

(c) (d)

(e)

Fig. 3.6 Exact finite-size spectra for different system sizes. The spectra are plotted with the param-
eters−� = 0.73 and hs = 0.1 for different system sizes: a N = 12, b N = 14, and c N = 16. Here
the three lowest excited levels in the (Sz = 0, q = 0, P = T = 1) sector (red, green, and yellow
curves from the lowest), and the lowest excitation energy in the (Sz = ±4, q = 0, P = 1) sector
(blue curve) are plotted. The BKT transition point corresponds to the crossing point of the two
energy levels in (Sz = 0, q = 0, P = T = 1) (red) and (Sz = ±4, q = 0, P = 1) (blue). The PT
transition point corresponds to the first coalescence point of two low-energy levels (e.g., red and
green), which is confirmed to be an exceptional point of the spectrum by testing the square-root
scaling of the energy difference δE between the two coalescing levels (inset). d The PT threshold
(γPT ) and e the BKT transition point (γBKT) are determined by extrapolating finite-size data to the
thermodynamic limit. Reproduced from Supplementary Fig. 4 of Ref. [23] by the author licensed
under a Creative Commons Attribution 4.0 International License

Hamiltonian is invariant with respect to spin rotation about the z axis, translation by
two sites, space inversion, and spin reversal. The corresponding conserved quantum
numbers are the total magnetization Sz ≡ ∑N

i=1 S
z
i , the wavenumber q = 2πk/L

(k ∈ Z, L ≡ N/2), the parity P = ±1, and the spin reversal T = ±1. The ground
statewith energy Eg(L) resides in the sector (Sz = 0, q = 0, P = T = 1). Following
Ref. [103], we denote the second lowest eigenenergy in this sector by E0 and the
lowest eigenenergy in the sector (Sz = ±4, q = 0, P = 1) by E3. Near the BKT
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transition line, these excitation energies satisfy [102]

E0(L) − Eg(L) = 2πv

L

(
2 + 1

3
δ(l) − 8

3
g′(l)

)
, (3.83)

E3(L) − Eg(L) = 2πv

L
(2 − δ(l)), (3.84)

where δ ≡ K − 2, g′ ≡
√
g2r − g2i , and the logarithmic RG scale l is related to the

system size L via el = L/π . At the lowest order of the RG flow Eq. (3.26), the
boundary of the BKT transition corresponds to δ = 2g′. Since E0 = E3 is equivalent
to this condition, the BKT transition point is determined from the crossing point
of these two energy levels. In our model, this corresponds to the crossing of the
levels shown as the red dashed line and the blue solid line in Fig. 3.5b. In numerical
calculations,weobtain the excitation energyof the level (Sz = ±4, q = 0, P = 1)by
multiplying that of the level (Sz = ±1, q = 0, P = 1) by a factor of 16 to minimize
possible finite-size effects due to an increase in the total magnetization Sz . We note
that, even though we consider a non-Hermitian model here, the level spectroscopy
method is still applicable because the BKT phase boundary entirely lies within the
PT-unbroken region in which the low-energy spectrum is equivalent to that of the
sine-Gordonmodel as we have proved by Eq. (3.75).We calculate the transition point
for different system sizes (see Fig. 3.6a–c), and extrapolate it to the thermodynamic
limit to determine the BKT transition point (see Fig. 3.6d). Since −� = cos(π/2K )

for hs = γ = 0 and the BKT transition occurs near K = 2, our analysis focuses on
a region around −� = cos(π/4) = 1/

√
2.

(ii) Identifying the PT transition point
We identify the PT transition point as the first coalescence point in the low-energy
spectrum with increasing the non-Hermitian term γ . To confirm that the identified
point indeed represents an exceptional point of the spectrum, we plot the square
of the energy difference (δE)2 and test the square-root scaling of δE which is a
signature of the coalescence of two eigenstates [60, 104] (see the inset figures in
Figs. 3.5b and3.6a–c). We then perform a linear fit to the (δE)2-γ plot and determine
the PT threshold γPT for different system sizes. Finally, we extrapolate it to the
thermodynamic limit and determine the PT symmetry breaking point (see Fig. 3.6d).

(iii) Testing the anomalous RG flows
To numerically test the anomalous semicircular RG flows predicted in the PT-broken
regime, we have calculated a large-distance behavior of a correlation function by
employing the infinite time-evolving block decimation (iTEBD) algorithm [105].
The iTEBD is still applicable to investigate the properties of the effective ground
state of interest here. The reason is that it allows us to obtain the imaginary-time
evolution exp(−Ĥτ)|
0〉/‖ exp(−Ĥτ)|
0〉‖ for an infinite system size; using a
sufficiently long imaginary time τ , we can reach the effective ground state, i.e., the
state having the lowest real part of eigenvalues in the entire spectrum. We remark
that the imaginary part of the eigenvalue does not contribute to the calculation as
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(a) (b)

Fig. 3.7 Anomalous enhancements of superfluid correlation and the Tomonaga-Luttinger liquid
parameter K in the PT-broken quantum critical phase. In panel a, we plot the spin-spin correlation
function Re[〈Ŝ+

r Ŝ−
0 〉], which exhibits the critical decay. In panel b, we plot K against the distance

r . The TLL parameter is extracted by performing the linear fitting of the correlation function in the
log-log plot around the distance r to determine the critical exponent, which can be related to the TLL
parameter via 〈Ŝ+

r Ŝ−
0 〉 ∝ (1/r)1/(2K ). We use −� = 0.61, hs = 0.1, and γ = 0.08, and χ denotes

the bond dimension of the matrix-product state used in the iTEBD calculations. Reproduced from
Fig. 3 of Ref. [23] by the author licensed under a Creative Commons Attribution 4.0 International
License

it merely modifies the phase of the wavefunction. The TLL parameter K can then
be extracted from the calculated correlation function via 〈Ŝ+

r Ŝ−
0 〉 ∝ (1/r)1/(2K ) (cf.

Eq. (3.16)).
Figure3.7 shows the critical decay with a varying critical exponent; remarkably,

the corresponding TLL parameter significantly increases and eventually surpasses
K = 2 in a long-distance regime. We can interpret a physical origin of this enhance-
ment of the superfluid correlation in the following way. In analogy with the dynam-
ical system [106], we may imagine that a local gain-loss structure introduced by the
imaginary term causes locally equilibrated flows of particles in the ground state. This
indicates the enhancement of fluctuations in the density, or equivalently, the suppres-
sion of fluctuations in the conjugate phase, leading to the increase of the superfluid
correlation.

3.3.4 Nonperturbative Renormalization Group Analysis

We have so far analyzed the perturbative regime in which both gr,i and δ = K − 2
are small. The performed perturbative RG analysis should remain valid only in this
restricted region. Yet, the anomalous RG flows found in the PT broken regime (see
Fig. 3.4d) indicate that the strength of gi can be significantly large in the intermediate
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region of the flows if we start from a large value of −δ = 2 − K > 0. In such a
nonperturbative regime, the perturbative analysis is expected to be no longer valid.
It is natural to ask the fate of the anomalous RG flows in a large coupling regime.

To address this question, we employ the nonperturbative analysis based on the
functional renormalization group (FRG). In general, a FRG equation is defined by
[107, 108]

	∂	�	[φ] = 1

2
Tr

[
	∂	R	

�
(2)
	 [φ] + R	

]
, (3.85)

where �	 is the effective action for the field φ at a momentum scale 	, �(2)
	 is the

second functional derivative of the effective action with respect to φ, Tr stands for
the integration over all momenta, and R	 is the regulator function which we choose
to be

R	(p) = p2r(y), y = p2/	2, (3.86)

where we use the power-law regulator function r(y) = 1/y. Using the truncated
derivative expansion with the action being expanded in powers of the derivative of
the field, we get

�	[φ] =
∫

d2x

[
1

2
z	(φ)(∂μφ)2 + V	(φ) + · · ·

]
, (3.87)

where z	(φ) is thewavefunction renormalization factor andV	(φ) is themomentum-
dependent potential term. The sine-Gordon model can be analyzed by solving the
FRG equation over the functional subspace spanned by the following ansatz:

�	[φ] =
∫

d2x

[
1

2
z	(∂μφ)2 + gr,	 cos(2φ)

]
, (3.88)

where gr,	 is the momentum-dependent depth of the real potential, z	 is the
momentum-dependent (but field-independent) wavefunction renormalization that
can be related to the TLL parameter K by

z = 1

4πK
. (3.89)

For the power-law regulator (3.86), the momentum integrals can be analytically
performed. The resulting RG equations are [109, 110]:

dgr
dl

= − 1

2π zgr

[
1 −

√
1 − g2r

]
+ 2gr, (3.90)
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Fig. 3.8 RG flows of the generalized sine-Gordon model in the nonperturbative regime of the plane
gr = 0 (PT broken phase). In the vicinity of K � 2, the RG flows reproduce the semicircular flows
found in the perturbative analysis (cf. Fig. 3.4d). Below K < K ∗, the flows no longer go back to
the TLL fixed line and gi flows into the strong-coupling limit

dz

dl
= 1

24π

g2r(
1 − g2r

)3/2 , (3.91)

where l = − ln	 is the logarithmic RG scale. These equations reproduce the well-
known RG phase diagram of the sine-Gordon model [110] (cf. Fig. 3.2). We note
that for small coupling gr the equations are consistent with the perturbative results
in Eq. (3.26).8

gr = 0 and gi �= 0 case: isine-Gordon model

We now move onto the analysis of the generalized sine-Gordon model. For the sake
of simplicity, we first focus on the model with only an imaginary potential, namely,
the isine-Gordon model:

�	 =
∫

d2x

[
1

2
z	(∂μφ)2 − igi,	 cos(φ)

]
, (3.92)

where gi is the depth of the imaginary potential. Analytically continuing Eqs. (3.90)
and (3.91) by replacing gr → −igi, we obtain the following RG equations:

dgi
dl

= 1

2π zgi

[
1 −

√
1 + g2i

]
+ 2gi, (3.93)

dz

dl
= − 1

24π

g2i(
1 + g2i

)3/2 . (3.94)

8Note that the definitions of gr in the perturbative RG analysis and the FRG analysis coincide aside
from a constant factor.
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The corresponding RG phase diagram is shown in Fig. 3.8. In the vicinity of the
perturbative regime around K = 2,we reproduce the semicircular RGflows directing
into the TLL fixed line in K > 2, which are consistent with the perturbative analysis
(see Fig. 3.4d). These anomalous flows end up with a large TLL parameter K > 2
and persist even in the nonperturbative regime as long as the initial TLL parameter
K is larger than a certain value K ∗ � 1.589. As we approach K ∗ from above, the
TLL parameter diverges. At the threshold value K = K ∗, we find a new type of
phase transition; the separatrix starting from this point (red open circle in Fig. 3.8)
defines the phase boundary. We note that the curve separating the two phases is
asymptotically given by gi � K for large gi and K . Below the threshold K < K ∗,
the depth gi of the imaginary potential grows up to the strong-coupling limit. It
remains an important open question to address in detail the nature of this phase; in
analogy to the continuous quantum Zeno effect, it is expected that the diverging gi
(i.e., the strong measurement strength) will make the field φ localized and thus this
phase can be a gapped, noncritical phase.

General case in the generalized sine-Gordon model

For the sake of completeness, we here provide the RG equations for a general case
of the PT-symmetric sine-Gordon model in Eq. (3.72). To do so, let us begin with
the Hermitian model:

�	 =
∫

d2x

[
1

2
z	(∂μφ)2 + gr,	 cos(φ) + gi,	 sin(φ)

]

=
∫

d2x

[
1

2
z	(∂μφ)2 +

√
g2r,	 + g2i,	 cos(φ − θ0)

]
, (3.95)

where θ0 = arctan[gi/gr]. Because of the translational invariance φ → φ + θ0, this
model is equivalent to the sine-Gordon model in Eq. (3.88). We thus obtain the RG
equation by replacing gr with

√
g2r + g2s in Eqs. (3.90) and (3.91):

gr
dgr
dl

+ gi
dgi
dl

= − 1

2π z

[
1 −

√
1 − (g2r + g2i )

]
+ 2(g2r + g2i ), (3.96)

dz

dl
= 1

24π

g2r + g2i(
1 − (g2r + g2i )

)3/2 . (3.97)

Since the constant term θ0 should be invariant under the RG transformation, we
obtain:

gi
gr

= const. ⇐⇒ d

dl

(
gi
gr

)
= 0 ⇐⇒ dgi/dl

dgr/dl
= gi

gr
. (3.98)

From Eqs. (3.96), (3.97), and (3.98), we obtain the RG equations for gr, gi, and z as
follows:



3.3 Backaction on Quantum Criticality II: The Potential Term 59

dgr
dl

= − gr
2π z(g2r + g2i )

[
1 −

√
1 − (g2r + g2i )

]
+ 2gr, (3.99)

dgi
dl

= − gi
2π z(g2r + g2i )

[
1 −

√
1 − (g2r + g2i )

]
+ 2gi, (3.100)

dz

dl
= 1

24π

g2r + g2i(
1 − (g2r + g2i )

)3/2 . (3.101)

We now consider the PT-symmetric non-Hermitian sine-Gordon model:

�	 =
∫

d2x

[
1

2
z	(∂μφ)2 + gr,	 cos(φ) − igi,	 sin(φ)

]
. (3.102)

To obtain the RG equations of this model, we analytically continue Eqs. (3.99),
(3.100), and (3.101) by replacing gi → −igi:

dgr
dl

= − gr
2π z(g2r − g2i )

[
1 −

√
1 − (g2r − g2i )

]
+ 2gr, (3.103)

dgi
dl

= − gi
2π z(g2r − g2i )

[
1 −

√
1 − (g2r − g2i )

]
+ 2gi, (3.104)

dz

dl
= 1

24π

g2r − g2i(
1 − (g2r − g2i )

)3/2 . (3.105)

Several remarks are in order. Firstly, on the PT transition boundary (gi = gr) with
K < 2, the unconventional RG flows directing into the strong-coupling limit (cf.
Fig. 3.4c) still exist in the nonperturbative regime. Secondly, the fixed points on the
line K = 2 and gr = gs found in the perturbative analysis remain to be fixed points
even in the nonperturbative regime. Finally, aswe found in the previous subsection for
the gr = 0 case, a new type of phase transition between the TLL phase and a possible
noncritical phase with the strong imaginary potential will appear. We note that this
transition has not been found in the perturbative analysis. The 2D phase boundary
for this transition can be asymptotically given by the surface g2i − g2r � K 2 for
large gi.

3.3.5 Realization in Ultracold Gases with a One-Body Loss

We here discuss a possible physical realization of the generalized sine-Gordon
model (3.72) using ultracold atoms (see Fig. 3.9a). We start from a 1D Bose gas sub-
ject to an off-resonant optical lattice. This system is described by the Lieb-Liniger
model [111] with the periodic potential:

Ĥ =
∫

dx

{

̂†(x)

[
− �

2∇2

2m
+ Vr cos

(
2πx

d

)]

̂(x) + g

2

̂†(x)
̂†(x)
̂(x)
̂(x)

}
, (3.106)
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Fig. 3.9 Possible experimental realization of the generalized sine-Gordon model in a one-
dimensional dissipative ultracold gases. a One-dimensional ultracold bosonic atoms are subject
to a complex potential whose real (blue curve) and imaginary (red curve) parts are generated by
far-detuned and weak near-resonant waves. The latter induces a dissipative effect corresponding to
a one-body loss. b A non-Hermitian spin-chain model whose low-energy universal behavior repro-
duces that of the generalized sine-Gordon model. An additional deep optical lattice, which does
not affect the universal behavior, is introduced to tightly localize atoms. The real and the imaginary
parts of the complex potential lead to the staggered potentials ±hs and imaginary hoppings ±iγ
in the lattice model. We represent a lattice site occupied (not occupied) by a hard-core boson as
the up (down) spin. Reproduced from Fig. 4 of Ref. [23] by the author licensed under a Creative
Commons Attribution 4.0 International License

where 
̂(x) denotes the bosonic field operator,m is themass of an atom, Vr is a lattice
depth, d is a lattice constant, and g is an interaction strength between atoms. We then
introduce a dissipative optical lattice potential causing a one-body loss of atoms,
which can be created by a weak near-resonant light. We can interpret an atomic loss
as a one-body loss if the total decay rate � of the excited state |e〉 is faster than the
spontaneous emission rate from |e〉 to the ground state |g〉 and the Rabi frequency
� [32, 112, 113] (see Fig. 3.10). This scheme can be possible by, e.g., employing
appropriate energy levels [114] or recoil energies due to light-induced transitions [1].
From the second-order perturbation theory [60] with respect to the Rabi coupling,
we can adiabatically eliminate the excited state, resulting in the following effective
time-evolution equation of the ground-state atoms (see Appendix A for the detailed
derivation):

dρ̂

dt
= − i

�

(
Ĥeff ρ̂ − ρ̂Ĥ†

eff

)
+
∫

dx
|�(x)|2

�

̂(x)ρ̂
̂†(x), (3.107)

Ĥeff ≡ Ĥ − i�
∫

dx
|�(x)|2
2�


̂†(x)
̂(x). (3.108)

In general, the dissipative (unconditional) dynamics described by a master equation
tend to destroy subtle correlations underlying quantum critical phenomena. In con-
trast, we are here interested in the conditional non-Hermitian evolution, where the
dynamics is free from the destructive jump processes while nontrivial effects due to
measurement backaction still appear via non-Hermiticity of the effective Hamilto-
nian (3.108). Such conditional dynamics can be studied by employing postselections
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Fig. 3.10 Energy-level diagram of an atom. The excited state |e〉 has the frequency ω0 relative
to the ground state |g〉 and fast decay modes with the total decay rate �. A weak near-resonant
light with the Rabi frequency � and detuning δ creates an effective imaginary potential for the
ground-state atom, provided that � is much larger than the spontaneous decay rate from |e〉 to
|g〉. Reproduced from Supplementary Fig. 1 of Ref. [23] by the author licensed under a Creative
Commons Attribution 4.0 International License

[12, 13]; the achieved experimental fidelity has already been high enough to
allow experimenters to implement various types of postselections [15–17] (see also
Sect. 3.5).

In the effectiveHamiltonian (3.108), the spatiallymodulatedRabi frequency�(x)
is proportional to the electric field creating a dissipative optical lattice. To realize the
model (3.72), we choose |�(x)|2 = �2(1 + sin(2πx/d))/2 such that the effective
non-Hermitian Hamiltonian becomes

Ĥeff =
∫

dx

{

̂†(x)

[
−�

2∇2

2m
+ V (x)

]

̂(x) + g

2

̂†(x)
̂†(x)
̂(x)
̂(x)

}
, (3.109)

where we introduce the complex potential

V (x) = Vr cos

(
2πx

d

)
− iVi sin

(
2πx

d

)
, (3.110)

Vi = ��2

4�
. (3.111)

Here, we ignore the constant term −iViN proportional to the total number N of
atoms. This constant term is irrelevant in the non-Hermitian dynamics because it
is cancelled upon the normalization of the quantum state. Note that the effective
Hamiltonian (3.109) satisfies the PT symmetry because the potential satisfies the
condition V (x) = V ∗(−x).

The low-energy effective field theory of Ĥeff in Eq. (3.109) can be obtained by
following the standard procedure [77]. Firstly, as we have discussed in the previous
sections, an interacting 1D Bose gas without the potential V (x) is described at low
energies by the TLL Hamiltonian (3.3), where the fields φ̂ and θ̂ are related to
the bosonic field 
̂(x) via Eqs. (3.11) and (3.15). Secondly, we then discuss the
perturbative role of the potential term
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Fig. 3.11 Spectra of the lattice spin-chain model (3.82) plotted with the parameters −� =
0.5, hs = 0.0, N = 12 for different strengths of the imaginary hopping a γ = 0, b γ = 0.025,
c γ = 0.05, and d γ = 0.075. When the PT symmetry is broken, some of the excited states have
pairs of complex eigenvalues which are conjugate to each other, while the ground state remains to
have a real eigenvalue. The plotted energy levels reside in the sector (Sz = 0, q = 0, P = T = 1).
The ground state (GS) is indicated by the black arrow. Reproduced from Supplementary Fig. 2 of
Ref. [23] by the author licensed under a Creative Commons Attribution 4.0 International License

ĤV =
∫

dx V (x)
̂†(x)
̂(x) =
∫

dx V (x)ρ̂(x). (3.112)

Since we are interested in the commensurate phase transition, we assume the unit
filling ρ0d = 1, i.e., one atom per site. By substituting Eqs. (3.110) and (3.15) into
Eq. (3.112) and ignoring fast oscillating terms, we obtain [87]

ĤV = ρ0Vr

∫
dx cos

[
2φ̂(x)

]
− iρ0Vi

∫
dx sin

[
2φ̂(x)

]
. (3.113)
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Fig. 3.12 Ground-state fidelity in the PT-broken regime. The time evolution of the ground-state
fidelity of the system in the PT-broken regime is plotted for several different values of τ . The
imaginary hopping term γ is ramped up with different timescales τ = 0, 20, 50, 100. The ground
state |
GS,γ (t)〉 is calculated from the exact diagonalization of theHamiltonian at each time step. The
parameters are set to−� = 0.5, hs = 0, γ = 0.05, and N = 12. Reproduced from Supplementary
Fig. 3 of Ref. [23] by the author licensed under a Creative Commons Attribution 4.0 International
License

Defining αr,i ≡ πρ0Vr,i, we arrive at the PT-symmetric potential term in the gener-
alized sine-Godron model (3.72). It is worthwhile to mention that the lattice Hamil-
tonian (3.82) can also be realized by introducing a deep lattice, which has a period
d/2 and does not affect the universal behavior, in addition to the complex potential
(see Fig. 3.7b).

Remark on the dynamics in the PT-broken regime

We make a remark on the ground state of the PT-symmetric spin-chain model (3.82)
in the PT-broken regime.When the PT symmetry is broken, some excited eigenstates
turn out to have complex pairs of eigenvalues while the ground state remains to have
a real eigenvalue (see Fig. 3.11a–d for typical spectra). In particular, there exist high-
lyingunstablemodes havingpositive imaginary parts of eigenvalues.As a result, if the
system is significantly perturbed and highly excited, the amplitudes of these modes
can grow in time and eventually govern the physical properties of the system. This is
reminiscent of the phenomenon known as parametric instability or self-pulsing [115]
in excition-polariton systems, which can destroy the off-diagonal quasi-long-range
order in 1D Bose systems [116–118].

In contrast, our main focus here is on the effective ground state that sustains the
quantum critical behavior. We stress that this state can indeed be relevant in our
setup, where the system is initially prepared in the zero-temperature state of the
Hermitian Hamiltonian and then the imaginary part of the potential is adiabatically
ramped up. We numerically demonstrate in Fig. 3.12 that the system remains in the
ground state with almost unit fidelity for a long-time interval. Here we consider the
spin-chain model in Eq. (3.82) and adiabatically ramp up the imaginary term with

the time dependence γ (t) = γ ×
(
1 − 2/

(
e(t/τ)2 + 1

))
, where τ characterizes the



64 3 Quantum Critical Phenomena

timescale of the operation. The initial state |
(0)〉 is chosen to be the ground state
of the Hamiltonian with γ (0) = 0, and the time evolution |
(t)〉 is calculated by
diagonalizing the Hamiltonian at each time step. Figure3.12 shows the ground-state
fidelity |〈
GS,γ (t)|
(t)〉| of the instantaneous Hamiltonian with γ (t), indicating that
the system remains in the ground state for a time much longer than the ramping time
τ . Using a typical experimental time scale �/J = 3.6/(2π)ms [119], the lifetime
of the ground state can reach ∼ 150ms, which is sufficiently long compared with a
typical operation time of ultracold atom experiments [119].9

3.3.6 Short Summary

It is useful to make a short summary of this subsection.

• Generalizing the sine-Gordon model to the PT-symmetric non-Hermitian case, we
find that the two types of phase transitions emerge depending on the TLL param-
eter K . One belongs to the celebrated BKT transition that appears in the weakly
interacting regime (K > 2). The other is the PT transition found in the strongly
interacting regime (K < 2). The latter accompanies the spectral singularity, i.e.,
the nondiagonalizability of the Hamiltonian, and thus is unique to a non-Hermitian
system.

• Using the perturbative and functional RG analyses, we determine the phase dia-
gram of the generalized sine-Gordon model and find that the BKT and PT phase
transition surfaces are continuously connected. The connecting line consists of
nontrivial RG fixed points. On this fixed line, the theory is scale invariant and
constitutes the universality class that has no counterpart in Hermitian systems.

• The RG analyses predict that, in the PT-broken phase, there appear the unconven-
tional semicircular RG flows that violate the c-theorem. In this regime, the TLL
parameter K can increase to K > 2 even if the flow starts from the region K < 2.
Physically, this indicates that the competition between the local gain-loss structure
in the PT-symmetric system and strong correlations can result in the significant
enhancement of the superfluidity.

• Using the exact diagonalizations and the iTEBD algorithm, we numerically con-
firm the above RG predictions. The analyses clearly demonstrate that the RG anal-
ysis is indeed useful to study critical properties of a non-Hermitian many-body
system.

• In the nonperturbative regime of the PT-broken phase, the RG flows starting from
the strongly interacting regime (K < K ∗ � 1.589) flow into the strong coupling

9While the system size is rather small here, we note that the first signature of the enhancement of
superfluid correlation can appear from a relatively small size of, say, ∼10 sites (see Fig. 3.7b).
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limit of the imaginary potential. While we speculate that this phase is noncritical,
its nature merits further study.

• Our findings can be experimentally tested by a 1D Bose gas subject to a spatially
modulated one-body loss (see Sect. 3.5 for experimental situations).

3.4 Backaction on Quantum Phase Transitions

We have so far studied the influence of measurement backaction relevant to 1D quan-
tum critical phenomena. In this section, we discuss its influence on quantum phase
transitions in higher dimensions by taking the Bose-Hubbard model as a concrete
physical example. Thismodel exhibits the superfluid-to-Mott insulator transition [92]
and has been realized in ultracold atoms trapped in an optical lattice [120, 121]. We
are interested in how the backaction from an external observer affects the quantum
critical point.

3.4.1 Model

The Bose-Hubbard Hamiltonian [92] is defined by

ĤBH = Ĥ0 + V̂ , (3.114)

Ĥ0 = U

2

∑

i

n̂i (n̂i − 1) − μ
∑

i

n̂i , (3.115)

V̂ = −J
∑

〈i, j〉
(b̂†i b̂ j + H.c.). (3.116)

Here, b̂†i (b̂i ) is a creation (annihilation) operator of bosons at site i , n̂i ≡ b̂†i b̂i ,
U represents the strength of the on-site interaction, J characterizes the hopping
amplitude, andμ is the chemical potential. If the interaction energy is dominant (i.e.,
J � U ), the ground state is the gapped Mott insulator phase. With an increase in
the kinetic energy J/U , the phase transition to the superfluid phase occurs [122] at
the critical point (J/U )c, where the energy gap closes. In the μ − J phase diagram,
a tip of each Mott lobe corresponds to a critical value (J/U )c at an integer filling ρ

(as illustrated in Fig. 3.14d). Under continuous monitoring, we consider an effective
non-Hermitian Hamiltonian Ĥeff

Ĥeff = ĤBH − iγ

2

∑

i

L̂†
i L̂ i , (3.117)
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where a jumpoperator L̂ i characterizes ameasurement process performed andγ is the
measurement strength.Unless the second termcommuteswith ĤBH, themeasurement
backaction shifts the energies of the effective Hamiltonian. Such a measurement-
induced shift can manifest itself as a shift in the quantum critical point. A specific
form of a jump operator L̂ i is determined by an underlying measurement process; for
example, if the process accompanies a two-body loss [85], we take L̂ i = b̂2i . Another
example is a site-resolved measurement of atoms [1] corresponding to L̂ i = n̂i .

3.4.2 Measurement-Induced Shift of the Quantum Critical
Point

Mean-field analysis

We first study the shift of the quantum phase transition point by a mean-field analysis
[92]. To be concrete, we consider the unit filling ρ = 1 in this subsection. We denote
the annihilation operator as b̂i = β + δb̂i with a mean field β, substitute it in the
kinetic energy V̂ , and neglect the second-order terms of δb̂i . The resulting mean-
field Hamiltonian is given by

ĤMF
eff = V̂MF + Ĥ0 − iγ

2

∑

i

L̂†
i L̂ i , (3.118)

V̂MF = −J z
∑

i

(β∗b̂i + βb̂†i − |β|2), (3.119)

where z is the number of neighboring sites. The lowest real part of the eigenvalues of
ĤMF

eff provides the effective ground-state energy Eβ,γ of the system. In the vicinity of
the transition point, we can expand it as Eβ,γ = a0 + a2(γ )|β|2 + a4(γ )|β|4 + · · · .
We determine the coefficient a2(γ ) from the second-order perturbation with respect
to V̂MF. Then, the condition a2(γ ) = 0 determines the phase boundary (J/U )γ . The
tip of the Mott lobe (i.e., ∂(J/U )γ /∂μ = 0 under ∂2(J/U )γ /∂μ2 < 0) corresponds
to the critical point (J/U )c,γ . We define the relative shift of the transition point by

�c,γ ≡ (J/U )c,γ − (J/U )c,0

(J/U )c,0
, (3.120)

which can be obtained in the mean-field analysis as

�c,γ = 2 + √
2

2

(√
2c20 + c21

) ( γ

U

)2 + 5

16
(4 + 3

√
2)
(
2c20 − c21

)2 ( γ

U

)4 + O

(( γ

U

)6)
. (3.121)

We define the coefficient by cρ ≡ (〈ρ + 1|L̂† L̂|ρ + 1〉 − 〈ρ|L̂† L̂|ρ〉)/2, in which
we omit the site label i . For instance, it takes cρ = ρ for the two-body loss process
L̂ = b̂2. From Eq. (3.121), we can conclude that a general measurement process
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Fig. 3.13 Relative amount of the shift �c,γ of the quantum critical point due to the measurement
backaction plotted against the measurement strength γ /U . To be concrete, we choose L̂i = b̂2, in
which a quantum jumpprocess leads to a two-body loss of atoms.Wecompare the perturbativemean-
field result given by Eq. (3.121) (blue solid curve) with the numerical results (red dots) calculated by
the exact diagonalization (see the text for details). Reproduced from Fig. 2 of Ref. [10]. Copyright
© 2016 by the American Physical Society

shifts the quantum critical point in favor of the Mott phase. In the case of two-body
loss or site-resolved measurement, this shift is a reminiscent of the suppression of
hopping due to the continuous quantum Zeno effect [85, 90, 91, 123–125]. We
note that the strong-coupling-expansion analysis presented below indicates that the
effective ground state has the lowest imaginary part of the eigenvalue (as well as its
real part) and thus survives longest in the non-Hermitian dynamics. We also obtain
the transition point by exactly diagonalizing the non-Hermitian Hamiltonian. To be
consistent with themean-field analysis, we choose an infinite-range hopping with the
amplitude J/N . Figure3.13 shows that the perturbative formula (3.121) is indeed
valid for small γ /U . In numerics, we determine the transition point by locating the
point corresponding to the minimal gap.

Strong-coupling-expansion analysis

In the μ − J diagram shown in Fig. 3.14d, atom-number fluctuations at each site
are enhanced in the regimes close to integer values of μ/U (see Fig. 3.14d). In such
regimes, we thus have to take into account a statistical mixture ofMott states with dif-
ferent fillings. This can be done by performing the strong-coupling-expansion analy-
sis [126, 127], which provides asymptotically exact results in the limit of J/U → 0.
We perform a degenerate perturbation theory with respect to the hopping term V̂ ,
and calculate the gap � of the eigenenergies between the ground state and the first
excited state. We determine the phase boundary as the point at which the energy
gap closes � = 0. As a consequence, we can obtain an analytical expression for the
shifted phase boundary at near integer values of μ/U , showing the characteristic
expansion of the Mott lobe due to measurement backaction.

Let us now describe details about the analysis. As mentioned above, we consider
theMott lobeswith integer fillingρ = 1, 2, . . . on ad-dimensional hypercubic lattice.
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(a) (c) (d)

(b)

Fig. 3.14 Second-order processes in the strong-coupling-expansion analysis. Panels (a) and (b)
show the processes contributing to the diagonal and off-diagonal matrix elements, respectively. The
occupied lattice sites are represented by the filled circles, while holes are indicated by the dashed
circles. c Coefficients α

Up,Low
d,ρ,γ for the upper (blue) and lower (red) boundaries of the Mott lobe

(see the main text for the definitions of α
Up,Low
d,ρ,γ ). We consider L̂i = b̂2i with d = 3 and ρ = 1. d

Schematic illustration of the modified μ-J diagram of the non-Hermitian Bose-Hubbard model.
The measurement backaction triggers the expansion of the Mott lobe, resulting in the shift of the
quantum critical point. Reproduced from Fig. 3 of Ref. [10]. Copyright © 2016 by the American
Physical Society

The unperturbed Hamiltonian is

Ĥ0 = U

2

∑

i

n̂i (n̂i − 1) − μ
∑

i

n̂i − iγ

2

∑

i

L̂†
i L̂ i . (3.122)

Its ground state is still in theMott-insulator state. The first excited states in the regime
close to the upper phase boundary are degenerate states with only a single site being
occupied by (ρ + 1) bosons while the other sites being occupied by ρ bosons. In
contrast, close to the lower boundary, the first excited states are degenerate with
only a single site being occupied by (ρ − 1) bosons while the other sites being
occupied by ρ bosons. Using a degenerate perturbation theory [127] with respect to

the hopping term V̂ = −J
∑

〈i, j〉
(
â†i â j + H.c.

)
up to the second order, we obtain

complex eigenvalues of the ground and first excited states (see Fig. 3.14a, b for the
relevant hopping processes). We define the energy gaps by the differences of the
real parts of the eigenvalues between the ground and first excited states. They are
obtained as

�
Up
d,ρ = −2d(ρ + 1)J+ρU−μ − 2dρ(ρ + 1)(2d − 3)J 2

U + (γ 2/U )(cM,ρ−1 − cM,ρ )2
− dρ(ρ + 2)J 2

U + (γ 2/4U )(cM,ρ−1 − cM,ρ+1)2
,

(3.123)

�Low
d,ρ = −2dρ J−(ρ − 1)U+μ − 2dρ(ρ + 1)(2d − 3)J 2

U + (γ 2/U )(cM,ρ−1 − cM,ρ )2
− d(ρ − 1)(ρ + 1)J 2

U + (γ 2/4U )(cM,ρ−1 − cM,ρ+1)2
,

(3.124)

where�Up and�Low represent the gaps in the vicinity of the upper and lower bound-
aries of the Mott lobe. The phase boundary can be obtained from the gap closing
points:
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(μ

U

)Up
c,γ

= ρ − 2d(ρ + 1)
J

U
− α

Up
d,ρ,γ

(
J

U

)2

, (3.125)

(μ

U

)Low
c,γ

= ρ − 1 + 2dρ
J

U
+ αLow

d,ρ,γ

(
J

U

)2

, (3.126)

where the coefficients α
Up,Low
d,ρ,γ are given by

α
Up
d,ρ,γ = 2dρ(ρ + 1)(2d − 3)

1 + (γ /U )2(cρ−1 − cρ)2
+ dρ(ρ + 2)

1 + (γ /2U )2(cρ−1 − cρ+1)2
, (3.127)

αLow
d,ρ,γ = 2dρ(ρ + 1)(2d − 3)

1 + (γ /U )2(cρ−1 − cρ)2
+ d(ρ − 1)(ρ + 1)

1 + (γ /2U )2(cρ−1 − cρ+1)2
. (3.128)

The measurement backaction γ > 0 decreases these coefficients α as shown in
Fig. 3.14c, resulting in effective expansions of the Mott lobes as we can infer from
Eqs. (3.125) and (3.126) (see Fig. 3.14d for an illustration). We remark that the
results (3.125) and (3.126) reproduce the known results for the (Hermitian) Bose-
Hubbard model [126] in the limit γ → 0.

We remark that the effective ground state discussed here has the minimal decay
rate (i.e., the longest lifetime) in the non-Hermitian evolution. To be specific, we
consider the case of ρ = 1 and d = 3. The decay rates �e and �g of the first excited
state and the ground state are given by the imaginary parts of the corresponding
eigenvalues. The strong-coupling-expansion analysis provides

�
Up
e − �

Up
g = 36γ J2

U2 + γ 2(cρ−1 − cρ)2
+ 9γ J2

U2 + (γ 2/4)(cρ−1 − cρ+1)
2 > 0, (3.129)

�Low
e − �Low

g = 36γ J2

U2 + γ 2(cρ−1 − cρ)2
> 0, (3.130)

where �Up and �Low represent the decay rates of states close to the upper and lower
boundaries of the Mott lobe. These relations indicate that the excited state decays
faster than the ground state. It is straightforward to extend the analyses to the higher
energy states and to show that the decay rate of the ground state is minimal (i.e., it
has the longest lifetime).

3.4.3 Realization with Ultracold Gases in an Optical Lattice

We here propose two possible experimental realizations to test the theoretical results
presented in this subsection. Firstly, we propose to use an inelastic scattering process
to implement atomic systems accompanying a two-body loss of atoms. This process
can occur, for example, in the metastable state or by using the light-assisted inelastic
collisions as we will detail in the next section. The system evolves in time under
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(a) (b)

Fig. 3.15 Possible experiments of many-body systems under continuous observation. We propose
to use a an inelastic two-body loss and b an off-resonant light scattering. Reproduced from Fig. 5
of Ref. [10]. Copyright © 2016 by the American Physical Society

effects of an inelastic scattering process by which a pair of atoms is lost from a
trap potential (see Fig. 3.15a). This two-body loss process can be characterized by
L̂ i = b̂2i . The total number of particles after a short-time duration can be measured at
the single-atom level by quantum gas microscopy [128]. Comparing it with the total
number of particles in the initial state, one can postselect the realizations in which
the two numbers agree (see Fig. 3.15a). In this way, one can ideally simulate the
non-Hermitian dynamics governed by the effective Hamiltonian (3.117). In fact, our
simple analysis based on the effective non-Hermitian Hamiltonian correctly captures
the experimentally observed shift of the critical point [129], which is measured
without any postselections. It merits further study to elucidate to what extent the
non-Hermitian description can be applied to strongly correlated dissipative systems
accompanying a nonzero number of quantum jumps.

Secondly, we consider a measurement process using an off-resonant probe light
(see Fig. 3.15b), where the dominant process becomes an elastic photon scattering
process [130]. In this case, the jump operator becomes L̂ i = n̂i (see e.g., Ref. [131]
for a microscopic derivation). One can continuously monitor the scattered light by
quantum gas microscopy and may postselect the realizations in which no photons
are detected. Yet, only a portion of the scattered photons can be collected in practice
and the predicted shift of the critical point can be measured if a possible heating due
to undetected photons is not significant, as we detail in the next section.

3.5 Experimental Realizations in Ultracold Gases

We discuss practical experimental situations of the theoretical proposals discussed
in Sects. 3.2.3, 3.3.5 and 3.4.3.
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Possible realization of the generalized sine-Gordon model

We discuss a possible experimental realization of the PT-symmetric system pro-
posed in Sect. 3.3.5. To create an imaginary optical potential, we need to realize
atomic levels illustrated in Fig. 3.10. The fast decay modes can be realized by (i)
choosing appropriate spontaneous emissionprocesses or (ii) employing light-induced
transitions.

In scheme (i), one can use the F = 3 to F ′ = 3 transition (5S1/2 to 5P3/2) of
85Rb atoms to create an imaginary potential [113], where the excited F ′ = 3 state
has a decay channel to the F = 2 state. Implementations of complex potentials have
also been demonstrated by using other metastable atomic states [32, 112, 114].
The postselection can be implemented by, e.g., applying the state-selective imaging
technique [16, 132].Measuring only the number of atoms residing in the ground state,
one can select the realizations in which this number is unchanged between the initial
and final states. We note that the experimental fidelity of measuring the atom number
with such site-resolved imaging has reached almost unit fidelity (99.5% according
to Ref. [2]). Various types of postselections have already been implemented owing
to the high experimental fidelity [15–17].

In scheme (ii), one can use a fluorescent transition between the excited state and
a state other than the original ground state. In this setup, when the ground-state atom
is excited, it is quickly lost from an optical potential due to heating [133]. If the
resulting loss rate � is much larger than both the spontaneous emission rate and the
Rabi frequency �, one can adiabatically eliminate the excited state and implement
an effective imaginary potential [112]. Other candidate systems are 1D trapped ions
or Rydberg atoms with spontaneous decay [38, 134], and the atom-cavity system
[135] in which the photon leakage permits continuous observation.

While substantial atomic losses usually lead to experimental difficulties, we
remark that our theoretical predictions are accessible by using a very weak imaginary
potential with which the atomic loss rate can, in principle, be made arbitrarily small.
This is because the key parameter driving the phase transitions is the ratio between gi
and gr, which is equivalent to the ratio between the amplitudes of the imaginary and
real potentials (see Eq. (3.113)). Thus, the imaginary potential required to induce the
transition can be made very weak if the depth of the real part of the optical potential
is chosen to be sufficiently small. Indeed, such a weak imaginary potential should
be created in our proposal since the atomic loss rate is suppressed by a factor of
�/� in the limit of large � (see Eq. (3.108)). Because the depth of the real potential
can be made small, and the condition on the Rabi frequency �off > � can easily be
met owing to the smallness of the optical depth, the only requirement for the detun-
ing �off of the off-resonant light is �off > �. This point validates our assumption
that the real and imaginary potentials have the same periodicity. For example, for
the spontaneous emission process in 85Rb or the light-induced transition in the D2
transition of 87Rb, � is of the order of tens of MHz [113, 133]. Thus, if we set the
detuning at �off = 100 GHz, the off-resonant condition is well satisfied, while such
a detuning causes a less than 0.1% shift in the optical wavelength.
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We finally discuss experimental signatures in our theoretical proposal. First,
the measurement-induced BKT transition corresponds to a 1D superfluid-to-Mott-
insulator transition for ultracold atoms. This is associated with a power-law diver-
gence in the momentum distribution at zero momentum [87], which can be detected
by applying standard techniques such as time-of-flight imaging [121]. Second, the
PT symmetry breaking can be probed by detecting the single-mode lasing dynam-
ics of the system. In the PT-broken region, the system has an excited state whose
eigenvalue possesses a positive imaginary contribution; such an excited state can
acquire an exponentially growing amplitude in the time evolution. Thus, after excit-
ing the system through, e.g., shaking of an optical lattice [136], the system eventu-
ally approaches the state having the largest imaginary part of the eigenvalue. Such
a single-mode lasing dynamics entails a significant decrease in the entropy of the
system, which can be probed from shot-to-shot fluctuations in in-situ imaging of
atomic gases [15–17, 136]. Third, the anomalous variation of the critical exponent
(see Fig. 3.7) can be investigated through the analysis of the shot-to-shot noise cor-
relations in density fluctuations of a 1D Bose gas, as demonstrated in Ref. [83].

Possible realization of ultracold atoms with a two-body loss or light scattering

We discuss practical experimental situations of our proposals in Sects. 3.2.3 and
3.4.3, where a two-body loss of atoms and off-resonant light scattering are consid-
ered as possible measurement processes. Let us first discuss the former. A system
accompanying a controlled two-body loss can be realized with implementing inelas-
tic collisions between atoms [85]. The strength of measurement, i.e., the loss rate,
can be controlled by changing the intensity of an external light that induces inelastic
collisions. One may also use the metastable state of atoms to implement a two-body
loss [85, 137]; for example, the 3P2 state of 174Yb atoms has the inelastic scatter-
ing length ai = 2.8 nm in addition to the elastic one ar = 5.8 nm [137]. Another
promising candidate is ultracold molecules [124], which also have inelastic scatter-
ing channels leading to two-body losses.

We next consider experimental situations in the proposal using light scattering
to test the shift of the transition point. There, recoil energies due to (scattered but)
uncollected photons inevitably lead to heating of the system. We can estimate the
expected heating energy per atom as δE = (1 − η)γ τ × �

2k2/(2m), where η is the
collection efficiency of photons, k = 2π/λ represents the wavenumber, γ is the scat-
tering rate, τ represents the duration of the time evolution, andm is the atomic mass.
To be concrete, let us consider 87Rb atoms and the wavelength λ = 1064 nm and set
γ /U = 0.2 corresponding to∼10% shift of the transition point (see Fig. 3.13). If one
takes τ ∼ 1/γ , the temperature that induces the same amount of the shift can be esti-
mated as Tth/J � 3 atU/J � 25 [138], where we set kB = 1 and J/� = 3ms. From
the condition δE < Tth/J , which means that the predicted shift is not masked by the
finite-temperature effect, one can obtain a constraint η > 0.08. This detection fidelity
can be met by, for example, quantum gas microscopy in which an impressively high
fidelity (η = 0.1 ∼ 0.2) has been achieved [1, 2, 4–8, 128].

Finally, we consider a possible heating effect in the proposal to test the pre-
dicted shifts of the critical exponents in a 1D Bose gas under light scattering.
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A finite-temperature effect is characterized by a finite thermal correlation length
ξT ≡ �

2ρ0π/(mT ), where ρ0 is the number density of atoms. If the heating is not so
significant that a length scale of interest r in the correlation functions satisfies r < ξT ,
then the critical decay of the correlations can still be measured and the predicted
changes of the critical exponents can be tested. We also have to take into account the
validity of the TLL low-energy description. In a weakly (strongly) interacting 1D
Bose gas, the TLL description is applicable when 2π/(ρ0ξT u2) � 102 (10−2) [139],
where we recall that u is the dimensionless interaction parameter defined in Sect. 3.2.
If one considers the density ρ0 = 55 µm−1 and a length scale r = 10 µm, then one
can obtain a constraint η > 0.13 in the weakly interacting regime from the condition
on the TLL description, which can be realized in, e.g., quantum gas microscopy. The
constraint is much less stringent for the strongly interacting regime because the TLL
description is more robust due to a large value of u.

3.6 Conclusions and Outlook

We have investigated how the measurement backaction from continuous monitoring
influences the quantum critical phenomena and quantum phase transitions. Identi-
fying the relevant non-Hermitian perturbations to the Tomonaga-Luttinger liquid,
we have revealed unconventional 1D quantum critical phenomena beyond the realm
of the standard universality class. We found that the quadratic non-Hermitian per-
turbation leads to the bifurcating critical exponents that depend on the strength
of the measurement. In the presence of the non-Hermitian potential perturbation,
a combination of spectral singularity and quantum critical point results in a non-
trivial renormalization group fixed point that has no counterpart in Hermitian sys-
tems. Moreover, we found anomalous renormalization group flows violating the
c-theorem, which lead to enhancements of superfluid correlations in stark contrast
to the Berezinskii-Kosterlitz-Thouless paradigm. Our field-theoretic arguments pro-
vide a universal model-independent perspective to one-dimensional quantum criti-
cal phenomena under measurement. Analyzing the Bose-Hubbard model as a con-
crete model, we have also studied the influence of the measurement backaction on
quantum phase transitions in higher dimensions. We found that the superfluid-to-
Mott-insulator transition point is shifted in favor of the Mott lobes. We have pro-
posed experiments using quantum gas microscope with an estimation of possible
parameters.

There are several important future directions. Firstly, whilewe have focused on the
simplest quantum trajectory, which is the non-Hermitian dynamics without quantum
jumps, it would be desirable to develop a theoretical framework to address all the
possible quantum trajectories with a nonzero number of jump events. In the next
Chapter, we will introduce the notion of full-counting dynamics to achieve this aim.
There, we demonstrate that essential features found in the non-Hermitian dynamics
without quantum jumps can persist even in the presence of quantum jumps. From
this perspective, we expect that the signature of unique features found in this Chapter
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can sustain as long as detrimental effects from jump events are not significant; yet,
quantitative understanding of effects fromquantum jumps remains an important open
question. This can be done by applying the formulation developed in the next Chapter
to interacting many-body systems.

Secondly, it merits further study to analyze the generalized sine-Gordon model in
more detail. For instance, it is interesting to elucidate the relation between the univer-
sality found in this work and the non-unitary conformal field theories (CFT), which
appear in high-energy physics [96] and statistical mechanics [140]. In this respect,
it is worthwhile to note that a certain integrable spin model with PT-symmetric non-
Hermitian boundary fields is believed to be described by the non-unitary CFT at the
critical exceptional point [141]. It remains as an open question how the spectral sin-
gularity alters the behavior of the entanglement entropy, which can experimentally be
measured in ultracold atoms [17]. Also, it is a promising direction to further explore
unconventional quantum critical phenomena in other nonconservative many-body
systems beyond the generalized sine-Gordon model.

Finally, it is intriguing to explore further interesting physical phenomena unique to
non-Hermitian systems. Historically, the non-Hermitian approach has proven useful
to describe nuclear resonances [25, 26], chaotic scattering [27–29], microwave cavi-
ties [30, 31], single atoms [32, 33] and molecules [34, 35]. Recently, this description
has also found applications to a wide variety of fields including classical optics [58,
59], condensed matter physics [44–48], biological network [52–54], and chemistry
[55]. In view of these developments, it is particularly interesting to extend the con-
ventional notion of topological phenomena in the presence of the non-Hermiticity
[142]. There, how the unique aspects in non-Hermitian systems such as topological
structures around exceptional points [24] and spectral singularity can lead to a truly
novel phenomenon has yet to be clarified.

Appendix A: Adiabatic Elimination of Excited Atomic States

We provide the detailed derivation of the master equation (3.107) for the dissipative
dynamics of atoms subject to a one-body loss, which can be obtained after adiabati-
cally eliminating excited atomic states. We consider a situation in which atoms in the
system have an energy level diagram shown in Fig. 3.10. Here the excited state |e〉
has the frequency ω0 relative to the ground state |g〉 and fast decay channels to other
states with the total decay rate � much larger than the spontaneous emission rate
from |e〉 to |g〉. The system is subject to a weak near-resonant light whose electric
filed is given by E(x, t) = 2E0(x) cos(ωLt). The dynamics of atoms in the levels
{|g〉, |e〉} is then described by the many-body Lindblad equation:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] − �

2

∫ [

̂
†
e (x)
̂e(x)ρ̂ + ρ̂
̂

†
e (x)
̂e(x) − 2
̂e(x)ρ̂
̂

†
e (x)

]
dx, (A.1)
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where 
̂e denotes the field operator of an excited atom and the terms involving �

describe a loss of atoms in the state |e〉. Here Ĥ is the Hamiltonian of the interacting
two-level atoms:

Ĥ = Ĥg + Ĥe + V̂. (A.2)

Going onto the rotating frame and making the rotating-wave approximation, the
Hamiltonians Ĥg and Ĥe of ground- and excited-state atoms and the interaction
Hamiltonian V̂ describing the Rabi coupling between the two atomic levels are
given by

Ĥg =
∫

dx
[

̂†

g (x)
(

−�
2∇2

2m
+Ug(x)

)

̂g(x) + g

2

̂†

g (x)
̂
†
g (x)
̂g(x)
̂g(x)

]
, (A.3)

Ĥe =
∫

dx 
̂†
e (x)

(
−�

2∇2

2m
+Ue(x) + �δ

)

̂e(x), (A.4)

V̂ = −�

2

∫
dx
(
�(x)
̂†

g (x)
̂e(x) + H.c.
)

≡ V̂− + V̂+, (A.5)

whereUg,e(x)’s are optical trapping potentials of the ground- and excited-state atoms
created by a far-detuned light, g is the strength of the contact interaction between the
ground-state atoms, δ = ωL − ω0 is the detuning, �(x) = 2d · E0(x)/� is the Rabi
frequency with d = 〈e|d̂|g〉 being the dipole moment, and V̂+(−) are the coupling
terms that cause excitation (deexcitation) of the atoms. Let us introduce the non-
Hermitian Hamiltonian Ĥe,eff of the excited-state atoms by

Ĥe,eff = Ĥe − i��

2

∫
dx
̂†

e (x)
̂e(x). (A.6)

Then, the time-evolution equation (A.1) is written as follows:

dρ̂

dt
= − i

�

[(
Ĥg + Ĥe,eff + V̂

)
ρ̂ − ρ̂

(
Ĥg + Ĥ†

e,eff + V̂
)]

+ �

∫
dx
̂e(x)ρ̂
̂†

e (x). (A.7)

In the limit of a rapid decay � � δ,�, we can adiabatically eliminate the rapidly
evolving excited states and obtain the effective dynamics of the ground-state atoms.
We achieve this by solving Eq. (A.7) using the second-order perturbation theory
with respect to the weak coupling V̂ [60]. As shown below, the resulting time-
evolution equation for the ground-state atoms is given by Eq. (A.28), and it reduces
to the effective non-Hermitian dynamics (A.33)with the effectiveHamiltonian (A.29)
when we consider the simplest continuously monitored dynamics without quantum
jumps.

To perform the perturbative analysis, we work in the interaction picture, where
the density matrix is given by

ˆ̃ρI(t) = e
i
(
Ĥg+Ĥe,eff

)
t/�

ρ̂(t)e
−i
(
Ĥg+Ĥ†

e,eff

)
t/�

, (A.8)
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and a general operator Ô is represented by

ÔI(t) = e
i
(
Ĥg+Ĥe,eff

)
t/�Ôe−i

(
Ĥg+Ĥe,eff

)
t/�

. (A.9)

We note that ˆ̃ρI in Eq. (A.8) is not normalized to unity in general. The time-evolution
equation (A.7) is then simplified to

˙̃̂
ρI = − i

�

[
V̂I

ˆ̃ρI − ˆ̃ρIV̂†
I

]
+ �

∫
dx
̂I,e(x) ˆ̃ρI
̂

†
I,e(x). (A.10)

We assume that all the atoms reside in the ground state at t = 0. Then, we decompose
the evolving state ˆ̃ρI(t) into a perturbation series with respect to the weak coupling
V̂I:

ˆ̃ρI(t) = ˆ̃ρ(0)
I (t) + ˆ̃ρ(1)

I (t) + ˆ̃ρ(2)
I (t) + · · · ,

∣∣∣ ˆ̃ρ(n)
I (t)

∣∣∣ ∝
( |�|

�

)n ∣∣∣ ˆ̃ρ(0)
I (t)

∣∣∣ ,
(A.11)

where | · · · | denotes the trace norm. The recursive equations of the first three terms
in the expansion (A.11) are given by

˙̃̂
ρ

(0)
I = 0, (A.12)

˙̃̂
ρ

(1)
I = − i

�

[
V̂I

ˆ̃ρ(0)
I − ˆ̃ρ(0)

I V̂†
I

]
, (A.13)

˙̃̂
ρ

(2)
I = − i

�

[
V̂I

ˆ̃ρ(1)
I − ˆ̃ρ(1)

I V̂†
I

]
+ �

∫
dx
̂I,e(x) ˆ̃ρ(2)

I 
̂
†
I,e(x). (A.14)

From Eq. (A.12), we can take ˆ̃ρ(0)
I as a time-independent operator. Equation (A.13)

can formally be integrated to give

ˆ̃ρ(1)
I (t) = − i

�

∫ t

0
dt ′
[
V̂I(t

′) ˆ̃ρ(0)
I − ˆ̃ρ(0)

I V̂†
I (t

′)
]
. (A.15)

To integrate out the excited states and obtain the effective dynamics of the ground-
state atoms, we decompose ˆ̃ρ(2)

I into the subspaces of the ground- and excited-state
atoms. To do so, we introduce the projection P̂g onto the ground-state manifold by

P̂g = ∑
N P̂N

g , where P̂
N

g denotes the projection onto the subspace spanned by quan-
tum states containing N ground-state atoms only. We also introduce the projection

Q̂1

e onto quantum states having a single excited-state atom (and an arbitrary number
of ground-state atoms). Then, Eq. (A.14) can be decomposed as

P̂g
˙̃̂
ρ

(2)
I P̂g = − i

�
P̂g

[
V̂I ˆ̃ρ(1)

I − ˆ̃ρ(1)
I V̂†

I

]
P̂g + �P̂g

∫
dx
̂I,eQ̂1

e
ˆ̃ρ(2)
I Q̂1

e
̂
†
I,eP̂g, (A.16)

Q̂1
e
˙̃̂
ρ

(2)
I Q̂1

e = − i

�
Q̂1
e

[
V̂I ˆ̃ρ(1)

I − ˆ̃ρ(1)
I V̂†

I

]
Q̂1
e , (A.17)
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where Eq. (A.17) follows from the fact that ˆ̃ρ(2)
I contains, at most, one excited-state

atom. We adiabatically eliminate the excited states by integrating out Eq. (A.17):

Q̂1

e
ˆ̃ρ(2)
I (t)Q̂1

e = − i

�
Q̂1

e

∫ t

0
dt ′
[
V̂I(t

′) ˆ̃ρ(1)
I (t ′) − ˆ̃ρ(1)

I (t ′)V̂†
I (t

′)
]
Q̂1

e . (A.18)

Substituting Eqs. (A.15) and (A.18) into (A.16), we obtain

P̂g
˙̃̂
ρ

(2)
I P̂g = − 1

�2 P̂g

[
V̂I(t)

∫ t

0
dt ′V̂I(t

′) ˆ̃ρ(0)
I + H.c.

]
P̂g

+ �

�2 P̂g

∫
dx
̂I,eQ̂1

e

∫ t

0
dt ′

∫ t ′

0
dt ′′

[
V̂I(t

′) ˆ̃ρ(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1
e
̂

†
I,eP̂g. (A.19)

Here, in the second line in Eq. (A.19), the terms proportional to V̂IV̂I
ˆ̃ρ(0)
I or

ˆ̃ρ(0)
I V̂†

I V̂
†
I vanish because of the projection Q̂1

e . Then, since we assume that the
time scale of the strong dissipation is fast compared with other time scales appearing
in the system, we approximate the leading contributions by

e
−i
(
Ĥg+Ĥe,eff

)
t/�P̂g � P̂g, e

−i
(
Ĥg+Ĥe,eff

)
t/�Q̂1

e � e−�t/2Q̂1

e . (A.20)

From these equations, it follows that

P̂gV̂I(t) = P̂ge
i
(
Ĥg+Ĥe,eff

)
t/�

(V̂+ + V̂−)e
−i
(
Ĥg+Ĥe,eff

)
t/�

� P̂gV̂−Q̂1

ee
−i
(
Ĥg+Ĥe,eff

)
t/�

� e−�t/2P̂gV̂−Q̂1

e . (A.21)

Similarly, we obtain

Q̂1

eV̂I(t)P̂g = Q̂1

ee
i
(
Ĥg+Ĥe,eff

)
t/�

(V̂+ + V̂−)e
−i
(
Ĥg+Ĥe,eff

)
t/�P̂g

� e�t/2Q̂1

eV̂+P̂g. (A.22)

We then perform the integration in the first line on the right-hand side of Eq. (A.19)
and obtain

− 1

�2 P̂g

[
V̂I(t)

∫ t

0
dt ′V̂I(t

′) ˆ̃ρ(0)
I + H.c.

]
P̂g � − 1

�2

[
P̂gV̂−Q̂1

ee
−�t/2

∫ t

0
dt ′e�t ′/2Q̂1

eV̂+P̂g ˆ̃ρ(0)
I + H.c.

]

� − 2

�2�

(
P̂gV̂−V̂+P̂g ˆ̃ρ(0)

I + ˆ̃ρ(0)
I P̂gV̂−V̂+P̂g

)

= −
{∫

dx
|�(x)|2
2�


̂†
g (x)
̂g(x), ˆ̃ρ(0)

I

}
, (A.23)
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wherewe use Eqs. (A.21), (A.22), and the relations P̂g
ˆ̃ρ(0)
I P̂g = ˆ̃ρ(0)

I and (Q̂1

e)
2 = Q̂1

e
in the first line, and use Eq. (A.5) to derive the last line. To calculate the last line in
Eq. (A.19), we approximate

Q̂1
e

∫ t

0
dt ′

∫ t ′

0
dt ′′

[
V̂I(t

′) ˆ̃ρ(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1
e � 2

∫ t

0
dt ′

∫ t ′

0
dt ′′e�(t ′+t ′′)/2Q̂1

eV̂+ ˆ̃ρ(0)
I V̂−Q̂1

e

� 4e�t

�2 V̂+ ˆ̃ρ(0)
I V̂−, (A.24)

and
P̂g
̂I,eQ̂1

e � e−�t/2P̂g
̂eQ̂1

e, Q̂1

e
̂
†
I,eP̂g � e−�t/2Q̂1

e
̂
†
e P̂g. (A.25)

The last line in Eq. (A.19) can then be calculated as

�

�2
P̂g

∫
dx
̂I,eQ̂1

e

∫ t

0
dt ′
∫ t ′

0
dt ′′

[
V̂I(t

′) ˆ̃ρ(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1

e
̂
†
I,eP̂g

� 4

�2�

∫
dxP̂g
̂e(x)V̂+P̂g

ˆ̃ρ(0)
I P̂gV̂−
̂†

e (x)P̂g

� P̂g

∫
dx

|�(x)|2
�


̂g(x) ˆ̃ρ(0)
I 
̂†

g (x)P̂g, (A.26)

where we use Eqs. (A.24) and (A.25) and P̂g
ˆ̃ρ(0)
I P̂g = ˆ̃ρ(0)

I in the second line. To
derive the last line, we use the following relation

P̂g
̂e(x)V̂+P̂g = −��∗(x)
2

P̂g
̂g(x)P̂g. (A.27)

From Eqs. (A.19), (A.23), (A.26) and P̂g
˙̃̂
ρ

(0)
I P̂g = P̂g

˙̃̂
ρ

(1)
I P̂g = 0, the effective

time-evolution equation of the ground-state atoms is obtained as

dρ̂g

dt
= − i

�

(
Ĥg,eff ρ̂g − ρ̂gĤ†

g,eff

)
+
∫

dx
|�(x)|2

�

̂g(x)ρ̂g
̂

†
g (x), (A.28)

Ĥg,eff ≡ Ĥg − i�
∫

dx
|�(x)|2
2�


̂†
g (x)
̂g(x), (A.29)

where we go back to the Schrödinger picture and introduce the density matrix ρ̂g

projected onto the ground-state manifold by

ρ̂g(t) = P̂gρ̂(t)P̂g � P̂g
(
ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t)

) P̂g. (A.30)

Thenon-HermitianHamiltonian (A.29) describes the continuouslymonitoreddynam-
ics of the system conditioned on the realization with no quantum jumps being
observed, i.e., no atoms escape from the ground state [12, 13, 143]. To clar-
ify this point, let us assume that N ground-state atoms are initially prepared,
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i.e., P̂N

g ρ̂(0)P̂N

g = ρ̂(0). This initial condition implies

P̂N+l

g ρ̂g(0)P̂N+l

g = 0 (l = 1, 2, . . .), (A.31)

where we use
[
P̂N

g , P̂g

]
= 0. From Eqs. (A.28) and (A.31), we can in particular

show that, during the course of the time evolution,

P̂N+1
g ρ̂g(t)P̂N+1

g = 0. (A.32)

Let us now consider the dynamics without quantum jumps ˆ̃ρN
g (t) ≡ P̂N

g ρ̂(t)P̂N

g =
P̂N

g ρ̂g(t)P̂N

g , where the dynamics is conditioned such that no atoms are lost from the

initial state. Using Eqs. (A.28) and (A.32), we can show that this dynamics ˆ̃ρN
g is

governed by the non-Hermitian Hamiltonian (A.29):

d ˆ̃ρN
g

dt
= − i

�

(
Ĥg,eff

ˆ̃ρN
g − ˆ̃ρN

g Ĥ
†

g,eff

)
. (A.33)

Some remarks are in order here. First, an imaginary potential −i |�(x)|2/(2�) in
Eq. (A.29) arises from the second-order process of a virtual excitation and de-
excitation of the ground-state atoms (see Eq. (A.23)). Since no atoms are lost in
this process, the non-Hermitian contribution exists even when we do not observe
actual losses of atoms. Physically, such a contribution originates from the measure-
ment backaction associatedwith continuousmonitoring of the population of atoms in
the excited state [12]. Second, we note that the expression of the imaginary potential
indicates that the loss rate of atoms from the ground state is suppressed by a factor of
�/� for a large �. In particular, in the limit of � → ∞, the dynamics reduces to the
Hermitian evolution governed by Ĥg. This limit can be interpreted as the quantum
Zeno dynamics [144], where the strong measurement confines the dynamics into the
decay-free subspace and the time-evolution obeys the effective “Zeno" Hamiltonian.
In our model, such a Hamiltonian is given by Ĥg = P̂g Ĥ P̂g, where the total Hamil-
tonian Ĥ is projected onto the decay-free, ground-state manifold. In a general case
of a strong but finite �, we need to perform careful perturbative analyses [85, 86,
124, 145] to obtain the correction terms beyond the quantum Zeno dynamics, as we
have conducted above.
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Chapter 4
Out-of-Equilibrium Quantum Dynamics

Abstract Wepresent three general frameworks to describe the dynamics of quantum
many-particle systems under continuous observation. In Sect. 4.1, we formulate the
dynamics conditioned on the number of quantum jump events, which we term as the
full-counting dynamics. We apply it to an exactly solvable model of noninteracting
fermions and analyze its out-of-equilibrium dynamics after the quench.We find non-
local and chiral propagation of correlations beyond the Lieb-Robinson bound. The
unique features originate from the non-Hermiticity of the continuously monitored
dynamics and do not appear in the corresponding closed systems or the ensemble-
averageddissipative dynamics. InSect. 4.2,we formulate the thermalization andheat-
ing dynamics in generic many-body systems under measurements. Employing the
eigenstate thermalization hypothesis, we show that a generic (nonintegrable) many-
body systemwill thermalize at a single-trajectory level under continuous observation.
We provide numerical evidence of our findings by studying specific nonintegrable
models that are relevant to state-of-the-art experimental setups in ultracold gases. In
Sect. 4.3, we formulate the diffusive dynamics under a minimally destructive spatial
observation. We derive the many-body stochastic Schrödinger equation for indis-
tinguishable particles under continuous position measurement. We show that the
measurement indistinguishability of particles results in complete suppression of rel-
ative positional decoherence, leading to persistent correlations in transport dynamics
under measurement. We apply the theory of minimally destructive spatial observa-
tion to a setup of ultracold atoms in an optical lattice. In Sect. 4.4, we discuss possible
experimental realizations of our theoretical studies presented in this chapter. Finally,
we conclude this chapter with an outlook in Sect. 4.5.
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4.1 Propagation of Correlations and Entanglement Under
Measurement

4.1.1 Introduction

In the previous chapter, we have studied how the equilibrium many-body properties,
in particular, quantum critical phenomena are modified under the influences of mea-
surement backaction from continuous observation. We have focused on the simplest
continuously monitored evolution without quantum jumps, which is governed by the
effective non-Hermitian Hamiltonian. This consideration can be justified in a short-
time regime during which occurrences of quantum jumps are not very significant or
can be eliminated by postselections. Yet, when we move onto the question on the full
out-of-equilibrium dynamics of quantum systems under continuous observation, the
backaction from quantum jump events will be increasingly important in a longer time
regime. This motivates us to develop a theoretical framework to take into account all
the possible quantum trajectories.

The aim of this chapter is to develop common frameworks for studying out-of-
equilibrium dynamics of quantum many-particle systems under continuous obser-
vation. We formulate the frameworks in general ways and apply them to particular
models to elucidate the underlying physics unique to many-particle dynamics under
measurements.

In this section, by generalizing the notion of full-counting statistics to openmany-
particle systems, we develop a theoretical formalism to analyze out-of-equilibrium
dynamics under continuous observation with an arbitrary number of quantum jumps.
The full-counting statistics [1–4] (i.e., the probability distribution of the number
of detected signals) has been originally introduced to characterize the underlying
nonequilibrium dynamics of mesoscopic devices. Examples include quantum dots,
where the electron exchanged with the external environment can be detected at the
single-electron resolution [5–8], and photoemissions from atoms, which can be mea-
sured individually over a wide range of frequencies [9]. Related ideas have been also
applied to one-dimensional Bose gases [10–12] and measurements of entanglement
between electron leads [13]. However, most of the previous developments in this
direction have been achieved for quantum systems having small degrees of freedom.
Here, we consider an open many-particle system and develop a notion of the full-
counting dynamics that gives the time evolution of the density matrix conditioned on
the number of quantum jumps being observed. We apply our formalism to an exactly
solvable model and study its nonequilibrium dynamics under continuous observa-
tion. We reveal the emergent unique features such as nonlocal and chiral propagation
of correlations, which accompany an entanglement growth with oscillations. In par-
ticular, we show that correlations can propagate beyond the Lieb-Robinson bound
[14], which is the conventional maximal speed limit on propagation of correlations,
at the cost of probabilistic nature of quantummeasurement. We identify the origin of
these phenomena as the non-Hermiticity of the continuously monitored dynamics,
which becomes most prominent at an exceptional point of an effective Hamiltonian.
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In our solvable model, this singular point coincides with a spectrum transition point
in the parity-time (PT) symmetric non-Hermitian Hamiltonian [15].

4.1.2 General Idea: The Full-Counting Many-Particle
Dynamics

We first formulate our idea in a general manner. Consider an open quantum many-
particle system whose dissipative dynamics is described by the following master
equation

dρ̂(t)

dt
= −i

(
Ĥeff ρ̂ − ρ̂ Ĥ †

eff

)
+ J[ρ̂], (4.1)

where ρ̂(t) is the density matrix, Ĥeff = Ĥ − (i/2)
∑

a L̂
†
a L̂a is an effective non-

Hermitian Hamiltonian, L̂a is a jump operator, and J[ρ̂] = ∑
a L̂a ρ̂ L̂†

a describes
quantum jumpprocesses [16–19].We set� = 1.Weconsider continuouslymonitored
dynamics during the time interval [0, t] and count the number of quantum jumps that
have occurred during that interval. Let n be the number n of observed quantum jumps.
We then introduce the full-counting many-particle dynamics as follows:

ρ̂(n)(t) = P̂n ρ̂(t)P̂n

Pn(t)
, (4.2)

where P̂n is a projection operator onto the subspace with n jumps and Pn(t) =
Tr[P̂n ρ̂(t)P̂n] provides the probability of finding n jumps during the interval [0, t].
To be concrete, we assume that the jump process L̂a causes a one-body loss. Then,
one can in practice access the information about ρ̂(n)(t) by preparing N particles at
the initial time, letting the system evolve until time t , and measuring the total number
of particles after the evolution by, e.g., quantum gas microscopy. If the measurement
outcome is N − n particles, one can know that n jumps have occurred during the time
interval. Collecting data for realizations with n jumps, one can reconstruct the full-
counting density matrix ρ̂(n)(t). In experiments, we remark that similar postselective
operations have been already realized in ultracold atoms [20–23].

We can obtain a formal expression of the full-counting dynamics by taking the
average over all possible occurrences of n jump events. Classifying the trajectory
dynamics according to the number of quantum jumps ρ̂ = ∑N

n=0 �̂(n), an unnormal-
ized conditional density matrix �̂(n) = P̂n ρ̂P̂n can be solved as

�̂(n)(t) =
∑

{ak }nk=1

∫ t

0
dtn · · ·

∫ t2

0
dt1

n∏
k=1

[
Ûeff (�tk )L̂ak

]
Ûeff (t1)ρ̂(0)Û†

eff (t1)
n∏

k=1

[
L̂†ak Û

†
eff (�tk )

]
,

(4.3)



90 4 Out-of-Equilibrium Quantum Dynamics

where �tk = tk+1 − tk with tn+1 ≡ t , and Ûeff(t) = e−i Ĥeff t . For the unconditional
dissipative dynamics ρ̂(t) = ∑

n �̂(n)(t), the speed at which correlations build up
between distant particles is known to be bounded by the generalized Lieb-Robinson
(LR) velocity [24, 25] if the Liouvillian of Eq. (4.1) is the sum of local operators (see
AppendixA for a brief reviewof theLRbound). This is similar to closed systems [26–
34], where the (original) LR bound [14] sets the maximal speed limit on propagation
of correlations, leading to an effective light-cone causal structure in locally interacting
many-body systems. For the full-counting dynamics ρ̂(n)(t) that is conditioned on
the measurement outcome, one can no longer expect that the propagation speed
obeys the LR velocity due to the nonlocal nature of the measurement acting on
an entire many-particle system. The aim of this section is to elucidate the nature
of such previously unexplored nonequilibrium dynamics. To analyze the emergent
nonequilibrium phenomena in the full-counting dynamics, we hereafter focus on a
simple exactly solvable model.

4.1.3 System: Atoms Subject to a Spatially Modulated Loss

As a concrete example, we consider a noninteracting version of the lattice model
introduced in the previous chapter analyzing the unconventional critical behavior.We
here study its out-of-equilibrium dynamics after the quench by taking into account
all the possible quantum jumps.

For the sakeof completeness,webriefly review thederivationof the time-evolution
equation of the model. We start from the continuum model of one-dimensional spin-
polarized noninteracting fermions subject to two weak standing waves with wave-
lengthλ. One standingwave is far detuned from the atomic resonance and thus creates
a shallow real potential h0 cos(2πx/d), where h0 is the potential depth and d = λ/2
is the lattice spacing. The other is near resonant to the atomic resonance and creates
a weak dissipative potential that leads to a one-body loss.1 These beams are superim-
posed and displaced from each other by d/4 (see Fig. 4.1). Then, after adiabatically
eliminating the dynamics of excited states, the time evolution of ground-state atoms
can be described by the following Lindblad master equation:

dρ̂

dt
= −i

(
Ĥeff ρ̂ − ρ̂Ĥ†

eff

)
+ 2γ0

∫
dx

[
1 + sin

(
2πx

d

)]
�̂(x)ρ̂ �̂†(x),(4.4)

where

Ĥeff ≡
∫

dx �̂†(x)

(
− ∇2

2m
+ Veff(x) − iγ0

)
�̂(x) (4.5)

1While thewavelengths for the twopotentials are slightly different due to the detuning, the difference
can be estimated to be negligibly small (∼0.1%).



4.1 Propagation of Correlations and Entanglement Under Measurement 91

Fig. 4.1 Schematic figures illustrating the model considered. (Left panel) The continuum model
of one-dimensional ultracold atoms subject to two shallow optical lattices, one being far detuned
(blue) and the other being near-resonant (red) to an atomic resonance. (Right panel) Superimposing
a deep optical potential (black) having the half periodicity d/2 and employing the tight-binding
approximation, we obtain the lattice model analyzed in this section. Reproduced from Fig. S2 of
Ref. [35]. Copyright © 2018 by the American Physical Society

is an effective non-Hermitian Hamiltonian, �̂(x) denotes the fermonic field operator,
γ0 characterizes the strength of the dissipation that is determined by the intensity of
the near-resonant light. We also introduce

Veff(x) = h0 cos

(
2πx

d

)
− iγ0 sin

(
2πx

d

)
(4.6)

as a complex effective potential [36]. We then superimpose a deep lattice potential
with half periodicity d/2 (see Fig. 4.1). Employing the standard procedure of the
tight-binding approximation for the atomic field [22], we obtain the followingmaster
equation:

dρ̂(t)

dt
= −i

(
Ĥeff ρ̂ − ρ̂ Ĥ †

eff

)
+ J[ρ̂], (4.7)

where

Ĥeff = −
L−1∑
l=0

[(
J + (−1)l iγ

)(
ĉ†l+1ĉl + ĉ†l ĉl+1

)
+ (−1)l hĉ†l ĉl

]
− 2iγwN̂ ≡ ĤPT − 2iγwN̂

(4.8)
is a tight-binding version of the effective Hamiltonian (which is equivalent to the
noninteracting limit � → 0 of the Hamiltonian in the previous chapter), and

J[ρ̂] = 2γ
L−1∑
l=0

[2wĉl ρ̂ĉ†l + (−1)l(ĉl ρ̂ĉ
†
l+1 + ĉl+1ρ̂ĉ

†
l )] (4.9)

is a quantum jump process. Here, ĉl (ĉ
†
l ) is the annihilation (creation) operator of the

atom at site l, J (γ ) is the real (imaginary) hopping parameter, h is the staggered
on-site potential (see Fig. 4.2a), w is a factor determined by the depth of the deep
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lattice, and N̂ = ∑
l ĉ

†
l ĉl is the total atom-number operator. To ensure that the dynam-

ical map (4.7) is completely positive trace-preserving (CPTP) (i.e., the dynamics is
Markovian), we must impose the condition w ≥ 1. For the sake of concreteness, we
assume w = 1 below though the specific choice of its value is irrelevant to our main
results. We remark that both of the effective Hamiltonian Ĥeff and the jump process
J[ρ̂] consist of local operators and thus the generalized Lieb-Robinson bound [24,
25] should hold in the unconditional dynamics.

We assume that the initial state is half-filled N = L/2, where the length L of the
lattice is assumed to be even, impose the periodic boundary conditions, and denote
the first part of Ĥeff in Eq. (4.8) as ĤPT since it satisfies the parity-time (PT) symmetry
[15]. Since the effective Hamiltonian ĤPT is quadratic, it can be diagonalized as

ĤPT = −
L−1∑
l=0

[(
J+(−1)l iγ

)(
ĉ†l+1ĉl+ĉ†l ĉl+1

)
+(−1)l hĉ†l ĉl

]

=
∑

0≤k<2π

∑
λ=±

ελ(k)ĝ
†
λk f̂λk, (4.10)

where ε±(k) = ±√
h2 − 4γ 2 + 2J ′2(1 + cos(k)) are eigenvalues with J ′ =√

J 2 + γ 2 and k = 2πn/(L/2) (n = 0, 1, . . . , L/2 − 1). The operators ĝ† and f̂
create the right and left eigenvectors, i.e., ĤPT ĝ

†
λk |0〉 = ελ(k)ĝ

†
λk |0〉 and 〈0| f̂λk ĤPT =

〈0| f̂λkελ(k), and they obey an anticommutation relation

{ f̂λk, ĝ†λ′k ′ } = δk,k ′δλ,λ′ . (4.11)

An important consequence of the non-Hermiticity in the effective Hamiltonian is the
nonorthogonality of the eigenstates. It manifests itself as an unusual commutation
relation satisfied by ĝ and ĝ†:

{ĝλk, ĝ
†
λ′k ′ } = δk,k ′�λλ′(k), (4.12)

where�λλ′(k) are the 2 × 2 matrices. Their nonzero off-diagonal elements represent
the nonorthogonality between the right eigenvectors of different bands at mode k (see
Appendix B for details). In the PT-unbroken regime γ < h/2, the band spectrum is
real and gapped. The gap closes at k = π for γ = h/2 (see Fig. 4.2b). This point
corresponds to an exceptional point [37], i.e., two k = π eigenstates of the upper and
lower bands coalesce into a single one. In the PT-broken regime γ > h/2, eigenstates
around k = π turn out to have complex pairs of pure imaginary eigenvalues.
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Fig. 4.2 a Schematic illustration of an exactly solvable model for the full-counting dynamics.
b Energy bands ε±(k) for Eq. (4.10) with γ /h = 1/2 (solid curves) and γ = 0, h = J (dashed
curves). c Spatiotemporal dynamics of equal-time correlations for the unconditional evolution (left-
most panel) and the full-counting evolutions (other panels) conditioned on the number n of quantum
jumps. We use γ = h/2 = 0.5J and N = L/2 = 61. Reproduced from Fig. 1 of Ref. [35]. Copy-
right © 2018 by the American Physical Society

4.1.4 Nonequilibrium Dynamics of Correlations
and Entanglement

Nonlocal propagation of correlations

We next discuss emergent nonequilibrium phenomena unique to the full-counting
dynamics. Substituting the diagonalized effective Hamiltonian (4.10) into a general
solution (4.3), we can obtain an exact solution of the full-counting dynamics ρ̂(n)(t)
(see Appendix B for details). To be concrete, we consider the following quench
operation. Initially, we set h and γ to be zero and prepare the ground state of Ĥ .
At time t = 0, h and γ are suddenly switched on, and the system evolves in time
after which the site-resolvedmeasurement is performed to determine the number n of
quantum jumps, i.e., the number of atoms lost. Classifying the realizations according
to n, one can study the full-counting dynamics ρ̂(n)(t). We set γ = h/2 such that the
postquench Hamiltonian ĤPT is at the verge of the spectrum transition point, leading
to the linear dispersion around k = π (see Fig. 4.2b).
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Let us first consider the unconditional case ρ̂(t) = ∑N
n=0 Pn(t)ρ̂

(n)(t). The left-
most panel in Fig. 4.2c shows its spatiotemporal dynamics of an equal-time correla-
tion

C(l, t) = Tr[ρ̂(t)ĉ†l ĉ0]. (4.13)

Since the Liouvillian of the master equation consists of local operators, it is expected
that correlations can propagate no faster than twice the LR velocity 2vLR [24, 25, 38],
where vLR is determined from the maximum group velocity2 |∂ε±(k)/∂(k/2)|k=π =
2J ′. We remark that a similar blurred light cone has also been recently found in
numerical simulations of the dissipative Bose-Hubbard model [39].

A qualitatively different propagation can be found in the full-counting dynamics
ρ̂(n)(t). Figure4.2c plots an equal-time correlation

C (n)(l, t) = Tr[ρ̂(n)(t)ĉ†l ĉ0] (4.14)

for the full-counting dynamics conditioned on different values of n. There, nonlocal
propagations faster than the LR velocity of the corresponding unconditional dynam-
ics can be found. We also find that such supersonic modes propagate at the velocities
that are integer multiples of 2vLR. We identify the origin of these nonlocal propa-
gations as the non-Hermiticity in the underlying continuously monitored dynamics.
To elucidate this, we focus on the simplest trajectory dynamics with no jumps being
observed [40, 41]

ρ̂(0)(t) = e−i ĤPTt ρ̂(0)ei Ĥ
†
PTt

Tr[e−i ĤPTt ρ̂(0)ei Ĥ
†
PTt ] . (4.15)

Because an initially pure state remains pure [41] in Eq. (4.15), an unnormalized time-
dependent state can be written as |�t 〉 = e−i ĤPTt |�0〉, where we denote the initial
state as ρ̂(0) = |�0〉〈�0|. Letψλk’s be expansion coefficients of the initial state with
right eigenstates: |�0〉 = ∏

k[
∑

λ ψλk ĝ
†
λk]|0〉. Introducing the unequal-time correla-

tion C̃ (0)(l, t) = 〈�0|ĉ†l (t)ĉ0(0)|�0〉/〈�t |�t 〉 with ĉ†l (t) = ei Ĥ
†
PTt ĉ†l e

−i ĤPTt and sub-
stituting the diagonalized ĤPT into it, we obtain

C̃ (0)(l, t)= 2

L

∑
k

∑
λ=±

{
αλk

βλk

}
ψ∗

λke
iελ(k)t−ik�l/2

Nk(t)
. (4.16)

Here αλk and βλk are coefficients chosen according to the parity of l, �· is the ceiling
function, and we introduce the norm factor by

2A factor of two in the group velocity results from our choice of wavevectors in the Fourier trans-
forms of the sublattices (see e.g., the phase factor in Eq. 4.16).
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Fig. 4.3 The panels a and b show the unequal- and equal-time correlations in the non-Hermitian
quench dynamics, respectively. We use γ = h/2 = 0.5J and N = L/2 = 61. The Lieb-Robinson
bound is indicated by the white dashed lines. c The time needed to establish the correlations is
determined by pairs of quasiparticles propagating at velocities vLR and 3vLR. d Time evolutions
of effective band populations at J ′t = 0+ (postquench state), 4, and 8. Reproduced from Fig. 2 of
Ref. [35]. Copyright © 2018 by the American Physical Society

Nk(t) =
∑

λλ′=±
ψ∗

λk(t)�λλ′(k)ψλ′k(t), (4.17)

where ψλk(t) = ψλke−iελ(k)t (see Eq. (B.24) in Appendix B). The total norm of an
unnormalized quantum state |�t 〉 is given by the product of these factors 〈�t |�t 〉 =∏

k Nk(t).
The crucial point here is that due to the nonorthogonality of eigenvectors (�+− =

�∗−+ �= 0) the norm Nk(t) oscillates at the frequency 2ε+(k). Thus, C̃ (0)(l, t) in
Eq. (4.16) involves terms that oscillate at frequencies ελ(k), 3ελ(k), 5ελ(k), . . .,
leading to the propagations of quasiparticles at velocities vLR, 3vLR, 5vLR, . . . (see
Fig. 4.3a). As a result, the equal-time correlation C (0)(l, t) involves the propagations
at velocities 2vLR, 4vLR, 6vLR, . . . (see Fig. 4.3b) since it originates from quasipar-
ticle pairs propagating in opposite directions [26] (see Fig. 4.3c). We stress that
the emergence of these supersonic modes is a consequence of the unique interplay
between the many-particle nature of the system and the non-Hermiticity in the con-
tinuously monitored dynamics. Supersonic modes result from the nonlinearity due
to the oscillating norm factorsNk(t) in the denominator in Eq. (4.16). This is a direct
consequence of the total norm of a many-particle state, which is given by the prod-
uct of Nk(t) (cf. the derivation given in Appendix B). For the (one-body) classical
non-Hermitian systems, such oscillating factors do not appear inside the summation
over k in Eq. (4.16) since the total norm is given by the sum of Nk(t) rather than
their product [42]. Thus, our finding is a genuine quantum effect in the sense that
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the supersonic modes do not appear in the single-particle sector or the mean-field
non-Hermitian dynamics observed in optics [43, 44] or dissipative matter waves
[45–48].

In parallel with discussions in closed systems [26–34], the quantities ñλk(t) =
|ψλk |2/Nk(t) can be understood as an effective band population in the full-counting
dynamics. The conventional band population does not change during the time evolu-
tion after the quench in noninteracting closed systems [26, 32–34]. Meanwhile, the
effective population ñλk(t) can oscillate in time (see Fig. 4.3d). This is a nontrivial
consequence of the nonorthogonality between two eigenstates at mode k.

Finally, wemake a remark on themanifestation of the Lieb-Robinson bound in the
unconditional dynamics. In the full-counting dynamics ρ̂(n)(t) (see e.g., Fig. 4.3a and
b), there exist the robust supersonicmodes propagatingwith velocities 3vLR, 5vLR, . . .

for unequal-time correlations and with velocities 4vLR, 6vLR, . . . for equal-time cor-
relations. These modes clearly violate the LR bound since the supersonic modes
will eventually protrude into the tail beyond the light cone allowed by the bounds
(cf. Eqs. (A.1) and (A.2) in Appendix A). Yet, the propagation of correlations in
the unconditional dynamics ρ̂(t) = ∑

n Pn(t)ρ̂
(n)(t) is still limited by the LR veloc-

ity (see the left-most panel in Fig. 4.2c). Here, the LR bound manifests itself as an
exponential suppression of the supersonic modes due to the exponentially decay-
ing probability factor Pn(t) which multiplies the full-counting dynamics ρ̂(n)(t).
To see this, in Fig. 4.4 we plot (a) a typical profile of the correlation function in the
full-counting dynamics and (b) the values of the supersonic contribution for different
numbers of quantum jumps n. The latter shows that the supersonic contribution dwin-
dles very rapidly (faster than exponential decrease) as n increases. Thus, the major
contributions of the supersonic modes come from the trajectories with a relatively

(a) (b)

Fig. 4.4 aAbsolute value of the equal-time correlation |C (n)(l, t0)| = |Tr[ρ̂(n)(t)ĉ†l ĉ0]| for the null
quantum jumpn = 0 at time t0 = 5/J ′ plotted against lattice site l.All the parameters and the quench
protocol are the same as those in Fig. 4.2c. b Equal-time correlation C (n)(l0, t0) associated with the
supersonic modes propagating with the velocity 4vLR plotted against the number of quantum jumps.
The lattice site is chosen to be l0 = 35 at which the supersonic contribution is maximal (see also
the panel a). Reproduced from Fig. S1 of Ref. [35]. Copyright © 2018 by the American Physical
Society
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small number n of jumps (i.e., atomic loss). Meanwhile, the occurrence probabil-
ity of such trajectories will eventually be suppressed exponentially as a function of
time t . It is this exponential suppression that recovers the LR bound in the overall
unconditional density matrix ρ̂(t) = ∑

n Pn(t)ρ̂
(n)(t).

Chirality in propagation of correlations

The observed propagation also exhibits the chirality, i.e., it violates the left-right
symmetry. The gain-loss structure of ĤPT allows one to intuitively understand the
observed enhancement of propagation of correlations in the right direction (see
Fig. 4.5). The bond with positive (negative) imaginary hopping corresponds to the
“gain” (“loss”) bond at which particles are injected (removed). Due to the staggered
potential, a majority of the injected particles flow into the deeper potential in the
right direction and they are removed at the loss bond. As a result, the flow in the right
direction overweighs the reverse one.

This chirality becomesmost prominent at the transitionpointγ = h/2. Figure4.5a
plots time-averaged values of the current i J

∑L−1
l=0 (ĉ†l ĉl+1 − ĉ†l+1ĉl) for various h and

γ in a steady-state regime. At the threshold γ = h/2, the current takes the maximum
value, which originates from the strong nonorthogonality due to the exceptional
point at k = π (see Fig. 4.2b) [49]. Around this point, two eigenvectors of differ-
ent bands coalescence into the one having positive group velocities ∂ε/∂(k/2) > 0
(see Fig. 4.6). This confluent band structure causes the imbalanced band populations
ñλk(t) in Fig. 4.3d (especially in a regime k < π ), leading to a pronounced propaga-
tion in the right direction. We stress that the chirality here is particularly prominent

(a) (b)

Fig. 4.5 a The particle current is plotted against dissipation strength γ with different staggered
potentials h. We calculate the current by taking the average over a nearly steady-state regime (from
time t = 15/J ′ to 20/J ′). The inset schematic figure indicates a gain-loss structure leading to a net
particle current in the right direction. b Dynamics of entanglement entropy. We choose the initial
state to be a product state that is the ground state of Ĥ with h = ∞ and consider a subregion of a
length of 20 sites. We plot the results for different postquench parameters γ from 0.0 to 0.5 (top to
bottom) with step 0.1 and γ = h/2 held fixed. The oscillatory behavior shown in the inset originates
from the time-dependence of ñλk . Reproduced from Fig. 3 of Ref. [35]. Copyright © 2018 by the
American Physical Society
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due to the formation of the Fermi sea, making contrast to the single-particle sector
[50–55] that reduces to classical dynamics.

To further elucidate the origin of the chiral structure, we can make simple analyt-
ical arguments based on the eigenvectors in the vicinity of the exceptional point. Let
us start from the initial (Hermitian) Hamiltonian, i.e., the one with γ = h = 0.With-
out loss of generality, we set J = 1 throughout this subsection. There are two band
dispersions: one has a positive group velocity (ε>(k) = 2 sin(k/2)) and the other has
a negative group velocity (ε<(k) = −2 sin(k/2)). The corresponding eigenvectors
are given by diagonalizing the 2×2 Hermitian matrices with γ = h = 0 and J = 1
(cf. Eq. (B.3) in Appendix B). In the vicinity of the gapless point at k = π , we obtain
the results

c>(δk) = 1√
2

(−i − δk
2

1

)
+ O

(
(δk)2

)
, (4.18)

c<(δk) = 1√
2

(
i + δk

2
1

)
+ O

(
(δk)2

)
, (4.19)

where δk = k − π is the displacement satisfying |δk| � 1 and c>(<) is the eigen-
vector of the band dispersion having a positive (negative) group velocity in the basis
of the two sublattices. Since the lower band (ε(k) < 0) is filled in the initial ground
state, the eigenvector c>(δk) (c<(δk)) is populated for δk < 0 (δk > 0) at the initial
time (see the shaded region in Fig. 4.6).

We next consider the postquench Hamiltonian, i.e., the non-Hermitian Hamilto-
nian with nonzero γ satisfying h = 2γ . In this case, two eigenvectors of different
bands coalesce at the exceptional point at k = π . In the vicinity of the exceptional
point, we obtain simple analytical expressions of right eigenvectors as follows:

cR>(δk) = 1√
2

(−i
1

)
+ 1

4
√
2γ

(
−i(1 − 2iγ − √

1 + γ 2)√
1 + γ 2 − 1

)
δk + O

(
(δk)2

)
, (4.20)

cR<(δk) = 1√
2

(−i
1

)
+ 1

4
√
2γ

(
−i(1 − 2iγ + √

1 + γ 2)

−√
1 + γ 2 − 1

)
δk + O

(
(δk)2

)
, (4.21)

which are valid for |δk| � min(γ, 1). Here cR>(<) is the right eigenvector of the band
dispersion having the positive (negative) groupvelocity.Note that in the limit of δk →
0 these two eigenvectors coalesce into the one having a positive group velocity given
in Eq. (4.18) (see the left panel in Fig. 4.6). This coalescence of eigenvectors near
the exceptional point leads to the imbalanced effective populations of quasiparticles
having positive group velocities in k < π (see Fig. 4.3d), resulting in the pronounced
propagation of correlations in the positive direction as we demonstrated above. We
remark that if the gain-loss structure is reversed, i.e., if we set h = −2γ , the two
right eigenvectors can be shown to coalesce into the one having a negative group
velocity given in Eq. (4.19) (see the right panel in Fig. 4.6), leading to the pronounced
propagation in the negative direction.
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Fig. 4.6 Coalescence of eigenvectors near the exceptional point. (Left panel)When the postquench
Hamiltonian is near the spectral transition point, the gapless point at k = π forms an exceptional
point (EP). In the vicinity of EP, the two eigenvectors in different bands coalesce into the one having
positive group velocities (blue solid curve). Since the lower band is initially populated (shaded
region), this coalescence leads to an imbalanced effective population in the band having positive
group velocities in k < π , resulting in the pronounced propagation of correlations in the positive
direction as demonstrated above. (Right panel) In contrast, if the gain-loss structure is reversed (if we
set h = −2γ ), the band having negative group velocities (blue solid curve) is dominantly populated
in k > π . This results in the pronounced propagation in the negative direction. Reproduced from
Fig. S3 of Ref. [35]. Copyright © 2018 by the American Physical Society

Finally, we mention the origin of the discontinuity and the divergence of the
effective band populations appearing at k = π (see Fig. 4.3d). They are caused by
singularities in left eigenvectors at the exceptional point:

cL>(δk) = 2γ√
2(1 + γ 2)

(
i
1

)
1

δk
+ 1

2
√
2(1 + γ 2)

(
−i(1 + 2iγ +

√
1 + γ 2)√

1 + γ 2 + 1

)
+O (δk) , (4.22)

cL<(δk) = − 2γ√
2(1 + γ 2)

(
i
1

)
1

δk
+ 1

2
√
2(1 + γ 2)

(
−i(−1 − 2iγ +

√
1 + γ 2)√

1 + γ 2 − 1

)
+O(δk) , (4.23)

where cL>(<) are left eigenvectors of the band dispersions having the positive (neg-
ative) group velocity. The divergence of the left eigenvectors in the limit δk → 0
originates from the vanishing inner product between the right and left eigenvectors
at the exceptional point [44, 49]. To understand how this divergence leads to the
discontinuity of the effective band populations ñλk , we recall that ñλk is proportional
to the square of the expansion coefficient ψλk of the initial ground state in terms of
the right eigenvectors for the postquench non-Hermitian matrices, i.e., nλk ∝ |ψλk |2
with |�0〉 = ∏

k[
∑

λ ψλk ĝ
†
λk]|0〉. We then obtain the following relations:
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For δk < 0 :
{
ñ+,k ∝ ∣∣c†L< (δk) · c>(δk)

∣∣2 ∼ 0;
ñ−,k ∝ ∣∣c†L> (δk) · c>(δk)

∣∣2 ∼ 1.
(4.24)

For δk > 0 :
{
ñ+,k ∝ ∣∣c†L> (δk) · c<(δk)

∣∣2 � γ 2

1+γ 2
1

δk2 ;
ñ−,k ∝ ∣∣c†L< (δk) · c<(δk)

∣∣2 � γ 2

1+γ 2
1

δk2 .
(4.25)

Here we note that the expansion coefficientsψλk in terms of right eigenvectors can be
obtained by taking the inner product between the corresponding left eigenvectors and
the initial ground state since the left and right eigenvectors satisfy the orthonormal
condition { f̂λk, ĝ†λ′,k ′ } = δk,k ′δλ,λ′ . Equation (4.24) shows that the populations ñ±,k

remain finite if we approach the exceptional point k = π from below. This is because
the diverging contribution (i, 1)T in the left eigenvectors in Eqs. (4.22) and (4.23) is
orthogonal to the leading contribution (−i, 1)T of c>(δk) in Eq. (4.18). In contrast,
if we approach the exceptional point from above, the populations ñ±k diverge in
δk → 0 as shown in Eq. (4.25) since the diverging contribution (i, 1)T in Eqs. (4.22)
and (4.23) is parallel to the leading contribution of c<(δk) in Eq. (4.19).

Entanglement dynamics

The chirality found in the continuously monitored dynamics also alters the evolution
of the entanglement growth. Figure4.5b shows the entanglement entropy SA[ρ̂(0)(t)]
[56] after the quench with varying measurement strength γ . We choose a subregion
A to be an interval of 20 sites. Increasing γ , the entanglement entropy decreases due
to the enhanced chirality. We can understand this as follows. After the quench, pairs
of entangled quasiparticles are generated and they propagate in opposite directions
[26]. The number of correlated pairs with one quasiparticle being inside and the other
being outside of A determines the entanglement entropy. The chirality thus leads to
a decrease of the entanglement entropy because such correlated pairs propagating in
opposite directions cannot be generated via the chiral (i.e., unidirectional)modes. The
time-dependent band populations ñλk(t) cause an oscillation on the linear increase
of the entanglement entropy (inset in Fig. 4.5b). In light of the simple dispersion in
the Hamiltonian, this oscillatory behavior also gives an intriguing feature in open
systems; such a oscillation can appear only if the band spectrum possess multiple
local maxima in closed integrable systems [32].

4.2 Thermalization and Heating Dynamics Under
Measurement

4.2.1 Introduction

In the previous section, we have studied the peculiar out-of-equilibrium dynamics in
many-particle systems under measurement. Meanwhile, after such transient dynam-
ics, it is natural to expect that an interacting many-body system will ultimately
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equilibrate, especially in light of recent developments in our understanding of equi-
libration and thermalization in quantum many-body systems [28, 57–78]. In this
section, we ask the question of whether or not statistical mechanics [79–86] remains
valid as a description of such openmany-body systems under quantummeasurement.

In general, statistical mechanics provides a universal description to characterize
thermodynamic properties of an equilibrated physical system.To address the problem
of thermalization in quantum systems, we can classify them as follows: (i) systems
coupled to thermal environments, (ii) isolated systems, and (iii) systems in contact
with nonthermal environments. In class (i), it has been known that thermalization
to the Gibbs ensemble can be formulated by the phenomenological Lindblad master
equation [87–92]. There, the detailed balance condition for the Lindblad operators
ensures that the master equation always possesses the Gibbs ensemble at the tem-
perature of the thermal bath as a solution of the master equation. The last decade
has been devoted to advancing our understanding of thermalization in class (ii) [28,
57–78]. This is mainly motivated by recent experimental developments in ultracold
atoms [93–97] that allow one to prepare quantum many-body systems in nearly iso-
lated situations. As a generic and possiblemechanismof thermalization under unitary
dynamics, the eigenstate thermalization hypothesis (ETH) [68–78, 84, 85] has been
proposed. Numerical calculations for several nonintegrable many-body Hamiltoni-
ans [68–78] have verified the ETH, while it does not hold for integrable [98–104] or
many-body localized systems [105, 106].

An important remaining issue is to address a possible thermalization mechanism
in systems falling into class (iii). In this class, the dynamics is intrinsically nonuni-
tary while the detailed balanced condition is violated since a coupling to nonthermal
environment permits general nonunitary processes such as continuousmeasurements
[107–124] and engineered dissipation [35, 45, 47, 125–137]. In such a nonther-
mal environment, the bath temperature does not exist a priori and it is not obvious
whether or not the system still thermalizes and how a (possibly) thermalized state can
be related to the Gibbs ensemble. While related numerical studies have been done
for specific examples [19, 107, 118, 138, 139], a unified (i.e., model-independent)
understanding of thermalization in open generic many-body systems is still lacking.
In this section, we aim to extend the framework of thermalization to quantum many-
body systems coupled to generic environments permitted by controlled dissipations
and quantum measurements [140]. In experiments, our study is related to recent
realizations of a variety of open many-body systems [45, 47, 134–137]. The results
presented in this section are applicable not only to many-body systems under contin-
uous observation, but also to dissipative Lindblad dynamics of many-body systems
coupled to environments (that are not necessarily thermal) [35, 45, 47, 126–138] or
under noisy unitary operations [141–150]. The results presented in this section thus
provide yet another insight into why thermodynamics emerges so universally.
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4.2.2 Statistical Ensemble Under Minimally Destructive
Observation

Suppose that a generic (typically, non integrable) quantummany-body system is sub-
ject to continuous observation. The initial state is assumed to be a thermal equilibrium
state ρ̂eq whose mean energy is E0 and the corresponding temperature is T0 = 1/β0.
We set kB=1 and �=1 in this section.We consider the quantum trajectory dynamics
under continuous observation as formulated in Chap. 2. The dynamics is charac-
terized by a sequence of measurement outcomes, i.e., types M=(m1, . . .mn) and
occurrence times T =(t1, . . . tn) of quantum jumps, and is represented as

�̂M(t;T ) = �̂M
t;T ρ̂eq�̂

†M
t;T , (4.26)

where we introduce the nonunitary operator �̂M
t;T as

�̂M
t;T =

n∏
i=1

[Û(�ti )
√

γ L̂mi ]Û(t1). (4.27)

We recall that Û(τ )=e−i Ĥeff τ with Ĥeff = Ĥ − i �̂/2 and �̂ = γ
∑

m L̂†
m L̂m

describes the non-Hermitian evolution during no-jump events, γ characterizes a
measurement strength, L̂m is a jump operator associated with a measurement out-
come m, and we denote �ti = ti+1 − ti and tn+1= t . A jump operator L̂m is assumed
to be either a local operator or the sum of local operators and conserves the total
number of particles.

To extract generic features of the many-body trajectory dynamics, we assume the
ETH and the limit of minimally destructive observation. The former states that the
expectation values of arbitrary few-body observables with respect to a high-energy
eigenstate |Ea〉 of Ĥ coincide with those of the corresponding Gibbs ensemble [76],
as numerically supported in a number of nonintegrable many-body Hamiltonians
[68–78]. The latter indicates a situation in which a waiting time of quantum jumps
is much longer than the equilibration time of the many-body dynamics during a no-
jump process. More specifically, we consider the limit γ →0 with keeping γ t = μ

finite. Physically, this limit means that one typically observes a finite number of
quantum jumps during [0, t] while the system still does not reach an ultimate steady
state, which can typically be a trivial state such as an infinite-temperature state.
When a waiting time exceeds the equilibration time in the many-body dynamics, it
is expected that the memory of the occurrence times T will eventually be lost due to
the fast decay of the rapidly oscillating, time-dependent terms in the density matrix
[60]. Thus, long-time values of expectation values can be studied in terms of the
time-averaged density matrix [60]:

�̂M(t) =
∫ t

0
dtn · · ·

∫ t2

0
dt1�̂M(t;T ). (4.28)
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Assuming the minimally destructive limit and the ETH, we can achieve several sim-
plifications in Eq. (4.28). To begin with, we rewrite it by expanding a non-Hermitian
effectiveHamiltonian Ĥeff as Ĥeff = ∑

a �a|�R
a 〉〈�L

a |, where�a is a complex eigen-
value, and the right (left) eigenstates |�R

a 〉 (|�L
a 〉) satisfy the orthonormal condition

〈�R
a |�L

b 〉 = δab. Inserting the relation Û(τ ) = e−i Ĥeff τ = ∑
a e

−i�aτ |�R
a 〉〈�L

a | into
Eq. (4.28), we obtain

�̂M(t) =
∑

{ai }{bi }
F (t; {ai }, {bi })

n∏
i=1

[√γ (Vmi )ai+1ai ](Peq)a1b1
n∏

i=1

[√γ (V †
mi )bi bi+1 ]|�R

an+1
〉〈�L

bn+1
|,

(4.29)
where we introduce the matrices Vm and Peq as

(Vm)ab = 〈�L
a |L̂m |�R

b 〉, (Peq)ab = 〈�L
a |ρ̂eq|�L

b 〉, (4.30)

and F involves the time integration of the exponential factor

F (t; {ai }, {bi }) = e−i(�an+1−�∗
bn+1

)t
∫ t

0
dtn · · ·

∫ t2

0
dt1e

−i
∑n

i=1 �i ti (4.31)

with

�i = �ai − �∗
bi − (�ai+1 − �∗

bi+1
). (4.32)

In the minimally destructive limit (leading to t → ∞), we have only to take into
account the leading (nonoscillating) contributions in the integral F , i.e., the terms
with ai = bi with i = 1, 2, . . . , n + 1. Also, the eigenstates |�R,L

a 〉 can be replaced
by those |Ea〉 of the systemHamiltonian Ĥ , as theminimally destructive limit ensures
the vanishingly small non-Hermiticity γ → 0 in the effective Hamiltonian. Accord-
ingly, to express an imaginary part�a of an eigenvalue�a , we can use the perturbative
result �a = γ 〈Ea|∑m L̂†

m L̂m |Ea〉. These simplifications lead to

�̂M(t) �
∑
{ai }

e−μ�̃an+1

∫ μ

0
dμn · · ·

∫ μ2

0
dμ1e

−∑n
i=1 δ�̃ai μi (Vmn )an+1an · · · (Vm1 )a2a1 (peq)a1 |Ea1 〉〈Ea1 |,

(4.33)
where Vm and peq are matrices whose elements are defined by

(Vm)ab = |〈Ea|L̂m |Eb〉|2, (peq)a = 〈Ea|ρ̂eq|Ea〉, (4.34)

and we introduce variables

μi ≡ γ ti , (4.35)

�̃a ≡ �a/γ = 〈Ea|
∑
m

L̂†
m L̂m |Ea〉, (4.36)

δ�̃ai ≡ �̃ai − �̃ai+1 . (4.37)
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To attain a further simplification, we note the fact that the off-diagonal elements
(Vm)ab vanish exponentially fast with the energy differenceω = |Ea − Eb| [66, 67].
Thus, the dominant contributions to Eq. (4.33) are made frommatrix-vector products
for the elements ai and ai+1 that are close in energy, i.e., the elements satisfying
|Eai − Eai+1 |/|Eai + Eai+1 | � 1. For such elements, the ETH guarantees that the
fluctuation of the decay rate is strongly suppressed |�ai − �ai+1 |/|�ai + �ai+1 | � 1,
as we consider physical jump operators L̂m consisting of few-body operators. We
thus neglect δ�̃a’s in Eq. (4.33), leading to

�̂M(t) � μn

n!
∑
a

e−μ�̃a [Vmn · · ·Vm1 peq]a|Ea〉〈Ea|. (4.38)

Finally, while successive multiplications of matrices Vm on the initial distribution
peq can eventually change the mean energy E by an extensive amount, they still
keep the energy fluctuation subextensive. This follows from the cluster decompo-
sition property [101, 151, 152] of thermal eigenstates for local operators Ôx,y (see
Appendix C for details):

lim|x−y|→∞Tr[Ôx Ôy P̂a] − Tr[Ôx P̂a]Tr[Ôy P̂a] = 0, (4.39)

where P̂a =|Ea〉〈Ea|. In other words, the energy distribution is strongly peaked
around the mean value during each time interval between jump events. The ETH
then guarantees that the distribution of the detection rate �̂ is also strongly peaked
and its fluctuation around the mean value is vanishingly small in the thermodynamic
limit (see e.g., the top panel in Fig. 4.8c below). We thus replace �̃a in Eq. (4.38) by

its mean value �̃ in the final distribution (
∏n

i=1 Vmi )peq, and arrive at the following
simple expression of the density matrix:

�̂M(t) � μn

n! e
−μ�̃

∑
a

[Vmn · · ·Vm1 peq]a|Ea〉〈Ea|. (4.40)

After taking the normalization, we can rewrite �̂M as

ρ̂M = �M[ρ̂eq]
Z(M)

= 1

Z(M)

∑
a

[Vmn · · ·Vm1 peq
]
a P̂a, (4.41)

where we define �M=∏n
i=1

(
� ◦ Lmi ◦ �

)
with Lm[Ô]= L̂m Ô L̂†

m and �[Ô]=∑
a P̂a Ô P̂a , and Z(M) is a normalization constant. Physically, the dephasing channel

� originates from the ergodic, relaxation dynamics during the no-count process. We
remark that, in finite-size systems, the distribution in the energy basis is often rather
broad. Hence, in practice it can also be useful to use the expression (4.38) especially
when the diagonal elements of the detection rate �a vary significantly as a function
of energy.



4.2 Thermalization and Heating Dynamics Under Measurement 105

Because of the subextensiveness of the standard deviation of energy in ρ̂M (see
Appendix C), the energy distribution of ρ̂M has a sharp peak around the mean EM as
mentioned above. An effective temperature βM

eff of the system can thus be introduced

from the relation EM=Tr[Ĥ ρ̂βM
eff

], where ρ̂β =e−β Ĥ/Zβ is the Gibbs ensemble. It
is then guaranteed by the ETH that ρ̂M is indistinguishable from the Gibbs ensemble
if we focus on an expectation value of a few-body observable Ô:

Tr[Ôρ̂M] � Tr[Ôρ̂βM
eff

]. (4.42)

From now on, � is understood to be the equality in the thermodynamic limit. In this
sense, a generic quantum many-body system under continuous observation thermal-
izes at the single-trajectory level.

Several remarks are in order. Firstly, we emphasize that it is highly nontrivial
to precisely determine the temperature of an open many-body system. We usually
need to rely on ad hoc techniques for each problem. Our approach based on the
matrix-vector product ensemble (MVPE) (see Eq. (4.40)) offers a general approach
to extract its effective temperature. In principle, any physical quantities can then be
obtained from the Gibbs ensemble at an extracted temperature provided that the ETH
holds true. Secondly, as the systemHamiltonian Ĥ is assumed to be nonintegrable, it
should obey [Ĥ , L̂m] �=0. This noncommutativity indicates that the multiplication of
thematrixVm alters the temperature of the system. Finally, we remark on similarities
and differences betweenEq. (4.40) and the densitymatrix of isolated systems reached
after a sudden quench [68, 153–155] or slow unitary operations [76]. Both density
matrices are diagonal in the energy basis and coefficients are expressed by the product
ofmatrices and the vector. In the slowunitary operations, thematrix can be interpreted
as the transition matrix and it obeys the doubly stochastic condition

∑
a(V)ab =∑

b(V)ab = 1 that inevitably leads to heating of the system [66, 67, 156]. Yet, in the
MVPE obtained for the open-system dynamics, one cannot interpret the matrix V
as the transition matrix and, in particular, it violates the doubly stochastic condition.
One can thus perform the cooling of the system if artificial (typically non-Hermitian)
measurement operators L̂m are implemented [126, 127].

4.2.3 Numerical Simulations in Nonintegrable Open
Many-Body Systems

Nonintegrable systems under local and global measurements

We demonstrate our general approach formulated above by studying a Hamiltonian
Ĥ = K̂ + Û with nearest- and next-nearest-neighbor hopping andon-site interaction:
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K̂ = −
∑
l

(thb̂
†
l b̂l+1+t ′hb̂

†
l b̂l+2+H.c.), (4.43)

Û =
∑
l

(Un̂l n̂l+1+U ′n̂l n̂l+2), (4.44)

where b̂l (b̂
†
l ) annihilates (creates) a hard-core boson on site l and n̂l = b̂†l b̂l . We

assume that hard-core bosons are trapped in an open chain. It has been well estab-
lished that this Hamiltonian obeys the ETH [69, 73, 76, 78]. The system size and the
total number of bosons are set to be Ls =18 and N =6. We study two types of mea-
surements: (i) the site-resolved density measurement L̂l = n̂l , where a jump operator
acts on a local region and a jump is labeled by site l, and (ii) a global measurement
L̂=∑

l(−1)l n̂l , in which a type of jump is unique. To be concrete, we choose the
initial state to be an eigenstate3 |E0〉 with temperature T0=3th. We set the initial
time t=0 to be the first detection time of a quantum jump.

Figure4.7 shows a typical trajectory dynamics under the local measurement with
L̂l = n̂l . After each detection of a quantum jump, measurement backaction localizes
an atom on the detected lattice site, which subsequently spreads over and quickly
relaxes toward an equilibrium density (see Fig. 4.7a). Figure4.7b shows the corre-
sponding dynamics of the kinetic energy 〈K̂ 〉 (top) and the occupation 〈n̂k=0〉 at zero
momentum (bottom), and compares them with the predictions from the MVPE ρ̂M
(red chain) and the Gibbs ensemble ρ̂βM

eff
(green dashed). For each time interval, the

dynamical values agree with the MVPE predictions within time-dependent fluctua-
tions. To gain further insights, Fig. 4.7c plots the diagonal matrix elements of each
observable in the energy basis (top two panels) and energy distributions after every
quantum jump (the other panels). Small eigenstate-to-eigenstate fluctuations in the
observables and the remarkable agreements in the energy distributions explain the
success of the MVPE description in Fig. 4.7b. It is notable that only a few jumps
are sufficient to smear out the initial memory of a single eigenstate after which the
distribution is almost indistinguishable from that of the corresponding Gibbs ensem-
ble, thus validating the relation (4.42). Small fluctuations after the first jump (see
Fig. 4.7b) indicate that even a single quantum jump generates a sufficiently large
effective dimension to make the system equilibrate, which can be understood from
the substantial delocalization of an energy eigenstate in the Fock basis [157]. A dis-
crepancy of the Gibbs ensemble from 〈n̂k=0〉(t) in Fig. 4.7b can be attributed to the
small system size as detailed below. In this respect, it may be advantageous to use
ρ̂M rather than ρ̂βM

eft
for small systems that can be prepared in experiments.

Figure4.8 shows trajectory dynamics under the global measurement. Figure4.8a
shows dynamics of the distribution of the jump operator L̂=∑

l(−1)l n̂l . After each
jump, the measurement backaction localizes the distribution, leading to a cat-like
post-measurement state with relatively large weights on L̂=±4. The peaks rapidly
collapse and the distribution relaxes to a thermal one due to the noncommutativity
between Ĥ and L̂ . Figure4.8b plots the corresponding time evolution of 〈n̂k=0〉 in

3We remark that results for a general initial equilibrium distribution peq can be merely given as a
linear sum of the results for single eigenstates.
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Fig. 4.7 Typical quantum trajectory dynamics under the local measurement with L̂l = n̂l . a Spa-
tiotemporal dynamics of the particle-number density. Every time an atom is detected, a high-density
region appears which subsequently diffuses away toward an equilibrium value. b Time evolution
of the kinetic energy K̂ and that of the occupation n̂k=0 at zero momentum. Superimposed are the
values corresponding to the Gibbs ensemble ρ̂

βM
eff

(green dashed) and the MVPE ρ̂M (red dashed). c
Top two panels plot diagonal elements of the observables in the energy basis. The other panels plot
the energy distributions after each jump. We use th =U = t ′h =U ′ =1 and γ = 0.02 except for the
integrable case in (c) for which th =U =1 and t ′h =U ′ =0. Reproduced from Fig. S1 of Ref. [140].
Copyright © 2018 by the American Physical Society

comparison with the values obtained from the Gibbs ensemble ρ̂βM
eff
and the MVPE

ρ̂M. The top panel in Fig. 4.8c plots the diagonal values�a of �̂ while the other panels
show energy distributions after each jump. We again observe an excellent agreement
between the MVPE and the exact dynamical values.

Finite-size scaling analyses

Figure4.9 shows the results of the finite-size scaling analysis to test the precision of
the predictions from theMVPE ρ̂M and the corresponding Gibbs ensemble ρ̂βM

eff
with

an effective temperature. We calculate the relative deviations from the time-averaged
value:
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(a) (c)

(b)

Fig. 4.8 Typical quantum trajectory dynamics under the global measurement with L̂=∑
l (−1)l n̂l .

Dynamics of a the distribution of L̂ and b n̂k=0. cToppanel shows diagonal elements of the detection
rate �̂ in the energy basis. The other panels show the energy distributions after each jump. We use
the parameters as in Fig. 4.7. Reproduced from Fig. 1 of Ref. [140]. Copyright © 2018 by the
American Physical Society

rρ̂ =
∣∣∣Ô(t) − 〈Ô〉ρ̂

∣∣∣
∣∣∣Ô(t) + 〈Ô〉ρ̂

∣∣∣
, (4.45)

where Ô(t) denotes the time-averaged value of an observable Ô over the trajectory
dynamics during the time interval involving t between quantum jumps, 〈·〉ρ̂ = Tr[·ρ̂]
with ρ̂ being chosen to be either the MVPE or the Gibbs ensemble. As an observable
Ô , we use the kinetic energy K̂ or the occupation number n̂k=0 at zero momentum.
We set the filling N/L = 1/3 with N and L being the total number of atoms and the
system size, and vary N from 3 to 6. The results are presented in Fig. 4.9. The top
(bottom) panels show the relative deviations rρ̂ for each time interval after the n-th
jump event in the trajectory dynamics with the local (global) measurement processes.
These finite-size scaling analyses indicate that the relative errors of the MVPE pre-
dictions (filled circles) converge almost exponentially to zero in the thermodynamic
limit. We find that the convergence of the corresponding Gibbs ensemble predictions
(open circles) is slower than that of the MVPE. This fact can be attributed to a com-
bination of broad energy distributions of finite-size systems and large fluctuations
in diagonal elements of observables (see e.g., Fig. 4.7c). It is worthwhile to men-
tion that a similar slow convergence of the observable n̂k=0 to the equilibrium value
due to finite-size effects has also been found in the time-dependent density-matrix
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Fig. 4.9 Finite-size scaling analyses of the relative deviations of the predictions of the MVPE and
the corresponding Gibbs ensemble from the time-averaged value. The top (bottom) panels show
the relative deviations of the observables for each ensemble from their time-averaged values in the
trajectory dynamics after the n-th quantum jump with the local (global) measurement. The relative
deviations of the MVPE values from the time-averaged values are plotted as the blue (red) filled
circles for the kinetic energy K̂ (the occupation number at zero momentum n̂k=0). In the same way,
the deviations of the corresponding Gibbs ensemble are plotted as open circles. We remark that the
deviations of the MVPE predictions after the first jump n = 1 are negligibly small and not shown
in the plots. We set the parameters as in Fig. 4.7. Reproduced from Fig. S3 of Ref. [140]. Copyright
© 2018 by the American Physical Society

renormalization-group calculations of the Bose-Hubbard model with spontaneous
emissions [139].

Numerical results on integrable systems

An isolated integrable many-body system often fails to thermalize because the Gibbs
ensemble is not sufficient to fix distributions of an extensive number of local con-
served quantities. Here we present numerical results of trajectory dynamics with
an integrable system Hamiltonian. To be specific, we consider a local measurement
process L̂l = n̂l and choose the parameters as th = U = 1 and t ′h = U ′ = 0. For the
sake of comparison, in Fig. 4.10 we present the results for the trajectory dynamics
with the same occurrence times and types of quantum jumps as realized in the non-
integrable results presented in Fig. 4.7. The initial state is again chosen to be the
energy eigenstate |E0〉 of the integrable many-body Hamiltonian having an energy
corresponding to the temperature T0 = 3th.

Figure4.10a shows the spatiotemporal dynamics of the atom number at each lat-
tice site. Measurement backaction localizes an atom at the site of detection and
the density waves propagate ballistically through the system. The induced density
fluctuations are significantly larger than those found in the corresponding noninte-
grable results, and the relaxation to the equilibrium profile seems to be not reached
during each time interval between quantum jumps in the integrable case. Also, the
ballistically propagating density waves are reflected back at the boundaries and can
disturb the density; the finite-size effects can be more significant in the integrable
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Fig. 4.10 Numerical results on the trajectory dynamics for which the system Hamiltonian is inte-
grable and the measurement is local. a Spatiotemporal dynamics of the atom-number distribution
at each lattice site and b the corresponding dynamics of the kinetic energy K̂ (top panel) and the
occupation number at zero momentum n̂k=0 (bottom panel). c Top two panels show the diagonal
values of each observable in the energy basis for the integrable case (red triangle) and the nonin-
tegrable case (blue circle). Other panels show the changes of energy distributions after each jump.
We set the parameters as in Fig. 4.7. Reproduced from Fig. S4 of Ref. [140]. Copyright © 2018 by
the American Physical Society

case than the corresponding nonintegrable one. It merits further study to identify an
equilibration time scale in an integrable many-body system under continuous mea-
surement. Figure4.10b shows the corresponding dynamics of the kinetic energy K̂
and the occupation number n̂k=0 at zero momentum. Relatively small (large) time-
dependent fluctuations in the kinetic energy (the zero-momentum occupation) can
be attributed to the small (large) fluctuations of its diagonal values in the energy
basis (see the top two panels in Fig. 4.10c). Other panels in Fig. 4.10c show the cor-
responding changes of energy distributions after each quantum jump. In a similar
manner as in the nonintegrable results presented in Fig. 4.7, a few jumps are enough
to smear out the initial memory as a single energy eigenstate. This fact implies that
the biased weight on a possible nonthermal eigenstate admitted by the weak variant
of the ETH [70, 158] will disappear after observing a few number of quantum jumps.
The jump operator L̂l acts as a weak-integrability breaking (nonunitary) perturbation
and should eventually make the system thermalize.
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The thermalization behavior can be also inferred from the eventual agreement
between the time-dependent values of the observables and the predictions from the
Gibbs ensemble after several jumps (see Fig. 4.10b). Nevertheless, it is still evident
that a largely biasedweight on an initial (possibly nonthermal) state can survivewhen
the number of jumps is small (see e.g., the panels (i) and (ii) in Fig. 4.10c), and thus
the generalized Gibbs ensemble can be a suitable description in such a case. To make
concrete statements, we need a larger system size and more detailed analyses with
physically plausible initial conditions. We leave it as an interesting open question to
examine to what extent the initial memory of a possible nonthermal state can be kept
under the integrability-breaking continuous measurement process.

4.2.4 Application to Many-Body Lindblad Dynamics

Finally,we discuss an application of theMVPE to theLindblad dynamics.Aside from
the description of continuously monitored systems, the quantum trajectory dynamics
also provides a method to numerically solve the Lindblad master equation [19, 92]:

dρ̂

dt
= L[ρ̂] = −i(Ĥeff ρ̂ − ρ̂ Ĥ †

eff) + γ
∑
m

L̂m ρ̂ L̂†
m, (4.46)

where ρ̂(t)=∑
M �̂M(t) is the ensemble-averaged density matrix. The Lindblad

equation (4.46) can be used to study the dynamics of an open systemweakly coupled
to an environment [92] or a system subject to noisy unitary operations [141–144,
150]. However, taking the ensemble average is often very demanding especially for
a many-body system due to a large number of possible trajectories.

Whenwe focus on a (physically plausible) case of a translationally invariant Ĥ and
L̂m , theMVPE offers a simple approach to overcome this difficulty. The translational
invariance and the locality of L̂m lead to thematrixVm that is independent of a spatial
labelm. Therefore, the MVPE is characterized only by the number n of jumps rather
than their sequence4: ρ̂n ∝∑

a

[Vn peq
]
a P̂a . Since the detection rate �̂ is assumed

to consist of few-body observables, the ETH guarantees that the distribution of the
number n of quantum jumps has a sharp peak around the mean n. We thus obtain

Tr[ÔeLt ρ̂eq] � Tr[Ôρ̂nt ] � Tr[Ôρ̂
β
nt
eff

], (4.47)

where β
nt
eff is the corresponding effective temperature and nt is the mean number of

n during [0, t], which can be calculated from the implicit relation t�∑nt
n=0 1/�n

with �n =Tr[�̂ρ̂n]. Equation (4.47) indicates that expectation values of few-body
observables in the Lindblad many-body dynamics agree with those obtained from

4In fact, ρ̂n is nothing but the MVPE approximation of the full-counting dynamics introduced in
the previous section.
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(a) (b)

Fig. 4.11 Comparisons between the matrix-vector product ensemble (MVPE) predictions (red
solid line) and the Lindblad dynamics (black dashed curve) for a the kinetic energy K̂ and b the
occupation number at zeromomentum n̂k=0. The global continuousmeasurement is performedwith
a jump operator L̂ = ∑

l (−1)l n̂l . We set the parameters as in Fig. 4.7. The panel (b) is reproduced
from Fig. 2c of Ref. [140]. Copyright © 2018 by the American Physical Society

the typical MVPE or the Gibbs ensemble at an appropriate effective temperature.
Given the fact that the analysis of Eq. (4.46) requires the diagonalization of a D2×D2

Liouvillean (where D is the dimension of the Hilbert space), our approach (4.47)
can significantly simplify the analysis.

As an example, we have applied our approach to the nonintegrable lattice model
discussed in the previous subsections. To be specific, we consider the global mea-
surement L̂ = ∑

l(−1)l n̂l . Since theMVPE ρ̂n is characterized solely by the number
n of quantum jumps, it suffices to determine its typical number nt as a function of
time t to apply the MVPE to the Lindblad dynamics. This can be achieved by using
the relation nt = ∑∞

m=0 �(t − ∑m
n=0 1/�n), where�(x) is the Heaviside step func-

tion. Figure4.11 compares the MVPE predictions (red solid line) with the Lindblad
dynamics (black dashed curve) corresponding to the heating dynamics of (a) the
kinetic energy and (b) the occupation number at zero momentum under the global
measurement. The stepwise behavior in the MVPE prediction originates from the
discreteness of nt , which will diminish in the thermodynamic limit. The agreement
found in Fig. 4.11 thus demonstrates the relation (4.47) aside from the stepwise
finite-size contributions.

4.3 Diffusive Quantum Dynamics Under Measurement

4.3.1 Introduction

As we have reviewed in Chap. 2, there are two types of continuous measurements
depending on different underlying stochastic processes. The first one is a quan-
tum jump process that associates with a discontinuous change of a quantum state
described by the Poisson-like stochastic process. This type of measurement is what
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we have so far considered as continuous observation. Here, we study the other type of
measurement associated with the diffusive stochastic process known as the Wiener
process. To study diffusive dynamics of many-particle systems under continuous
position measurement, we consider the limit of a weak spatial resolution of in-site
measurements of quantum gases [116, 118, 134, 159–164]. This limit is of practical
importance as it will offer a nondestructive way of real-time observation of many-
particle systems, which may allow us to apply measurement-based feedback control
[165, 166] to quantum many-body systems. In contrast, the conventional techniques
of quantum gasmicroscopy [167] have been so far limited to a destructive single-shot
imaging [168].

In this section, we develop a theoretical framework to describe quantum dynam-
ics of multiple particles under a minimally destructive spatial observation. While the
stochastic Schrödinger equation of distinguishable particles under the spatial mea-
surement has been obtained as a straightforward generalization of the result for the
single-particle case [169–173], to our knowledge the derivation for indistinguish-
able particles has long been unknown [174]. We here achieve the latter by taking
the appropriate limit of strong atom-light coupling and weak spatial resolution. The
resulting equation indicates that measurement indistinguishability of particles com-
pletely suppresses the decoherence in the relative positions, resulting in the unique
quantum transport dynamics. In previous works on the site-resolved position mea-
surement [107, 130, 131, 175, 176] and continuous positionmeasurement of a single
quantum particle [169–173], we remark that the indistinguishability does not play
such a nontrivial role. We numerically demonstrate our findings for the minimal
model consisting of noninteracting two particles.

4.3.2 System: Atoms Under Spatial Observation

Weconsider the setup of our previouswork [162] that discusses the collapse ofmany-
particle wavefunction of atoms in an optical lattice due to the spatial measurement.
While we have neglected the internal quantum dynamics (i.e., hopping of atoms) in
Ref. [162] (which can be justified for a deep optical lattice), we are here interested
in a situation in which both the internal dynamics and the measurement backaction
play nontrivial roles.

Weconsider N atoms trapped in anoptical lattice,which are describedby theBose-
Hubbard Hamiltonian Ĥ = −J

∑
m(b̂†mb̂m+1 + H.c.) + (U/2)

∑
m n̂m(n̂m − 1).

Here, J is the hopping rate and U denotes the on-site interaction, b̂†m (b̂m) creates
(annihilates) an atom at site m, and n̂m = b̂†mb̂m . Here and henceforth, we setU = 0
for the sake of simplicity. We discuss the spatial measurement of atoms by an off-
resonant probe light (see Fig. 4.12). The detection of scattered photons causes the
collapse of the many-body wavefunction. The jump operator corresponding to this
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Fig. 4.12 Schematic figure
of spatially resolved
measurement of atoms on a
lattice whose spacing is d.
Trapped atoms
off-resonantly scatter probe
light. A lens aperture
diffracts the scattered
photons. The detection of
photons on the screen
induces the reduction of the
wavefunction according to
the outcome X and a spatial
resolution σ . Reproduced
from Fig. 2 of Ref. [119].
Copyright © 2017 by the
American Physical Society

continuous position measurement can be obtained as follows (see the Supplementary
Material of Ref. [162] for microscopic derivations):

M̂(X) = √
γ
∑
m

f (X − md)b̂†mb̂m, (4.48)

where X is a measurement outcome, γ denotes the measurement strength. We rep-
resent an amplitude of a general point spread function by f , which satisfies the nor-
malization condition

∫
f 2(X)dX = 1 and the parity symmetry f (X) = f (−X). As

we show later, the resulting time-evolution equation derived in the weak-resolution
limit depends on f only through its effective spatial resolution σ defined as

∫
dX f (X − md) f (X − ld) � 1 − (m − l)2d2

4σ 2
. (4.49)

For instance, it is just the standard deviation if f is chosen to be a Gaussian point
spread function f (X) = e−X2/(2σ 2)/(σ 2π)1/4.

We start from formulating the dynamics under the above spatial measurement
following a general theory reviewed in Chap. 2.5 The measurement process corre-
sponds to a photodetection on the screen and the quantum jump process is described
by the discrete stochastic process dN (X; t) that depends on X . The time evolution
is described by the following stochastic many-body Schrödinger equation:

5It is straightforward to generalize our discussion on the lattice system presented here to the con-
tinuum space.
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d|ψ〉 = − i

�
Ĥ |ψ〉dt − 1

2

∫
dX

(
M̂†(X)M̂(X) − 〈M̂†(X)M̂(X)〉

)
|ψ〉dt

+
∫

dX

⎛
⎝ M̂(X)|ψ〉√

〈M̂†(X)M̂(X)〉
− |ψ〉

⎞
⎠ dN (X; t), (4.50)

where 〈· · · 〉 is an expectation value with respect to |ψ〉. In general, the time evolution
is described by the non-Hermitian Hamiltonian in the no-jump process. In fact, for
a single-particle case, this dynamics reduces to the unitary evolution since the term
−1/2

∫
dX M̂†(X)M̂(X) is simply proportional to the identity operator. In the case

of multiple particles, the no-count evolution is in general intrinsically distinct from
the unitary evolution as the interference among particles leads to a change in the
detection rate. The second line in Eq. (4.50) corresponds to a jump process caused
by a detection of scattered photons on the screen. Mathematically, the stochastic
process dN (X; t) is known as a marked point process [177]

dN (X; t)dN (Y ; t) = δ(X − Y )dN (X; t), E[dN (X; t)] = 〈M̂†(X)M̂(X)〉dt,
(4.51)

where E[· · · ] denotes taking an ensemble average over measurement outcomes.
Physically, E[dN (X; t)]/dt provides the intensity of photons detected on position
X at time t .

4.3.3 Minimally Destructive Spatial Observation

To perform continuous spatial observation of a quantum gas in a nondestructive
manner, one has to implement a weak and frequent measurement. The reason is
that substantial heating and loss of atoms are caused by the conventional single-shot
observations [168, 178–181]. From this perspective, we consider the limit of weak
spatial resolution (σ � d) and strong atom-light coupling (γ � J/�) while keeping
γ /σ 2 finite. Taking such a limit is essential to describe nontrivial dynamics under
measurement which is continuous in time [169–173, 182]; otherwise, the quantum
Zeno effect would completely suppress the quantum dynamics [134].

To achieve the limiting procedure, we first consider the scaling of the quantity
Ñ (t) = ∫

N (t; X)dX , which is the number of photons detected during a time interval
[0, t]. The mean of its rate of change is (at the leading order)

〈
d Ñ (t)

dt

〉
=
∫

dX〈M̂†(X)M̂(X)〉 � γ
∑
m,l

(
1 − (m − l)2d2

4σ 2

)
〈n̂mn̂l〉 � γ N 2,

(4.52)
where the first approximate equality follows from Eq. (4.49). Since the number
of detections goes to infinity in the frequent measurement limit γ → ∞, one can
approximate the fluctuation of stochastic intensity as
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d Ñ (t) − ∫
dX〈M̂†(X)M̂(X)〉dt
N

√
γ

� dW (t), (4.53)

wherewe use the central limit theorem and employ the fact that the standard deviation
of 〈d Ñ (t)/dt〉 can be approximated by the square root of Eq. (4.52). We introduce
dW (t) as the Wiener stochastic process, which is characterized by

E[dW (t)] = 0, (dW (t))2 = dt. (4.54)

In a similar way, we can approximate the term including dN (X; t) as

dN (X; t) − 〈M̂†(X)M̂(X)〉dt√
〈M̂†(X)M̂(X)〉

� dW (X; t), (4.55)

where dW (X; t) is the spatially dependent Wiener process that is characterized by

E[dW (X; t)] = 0, dW (X; t)dW (Y ; t) = δ(X − Y )dt. (4.56)

4.3.4 Many-Body Stochastic Schrödinger Equations

In this subsection, we discuss the fundamental time-evolution equations of quantum
many-particle systems under the minimally destructive spatial observation. While
the equation for distinguishable particles can be straightforwardly obtained from
that for a single-particle case, to our knowledge the equation for indistinguishable
particles had not been known before our derivation.

Indistinguishable particles

We first study the case for indistinguishable particles. We rewrite Eq. (4.50) in terms
of the density matrix of a pure state ρ̂ = |ψ〉〈ψ |. Then, we take the limit of weak
spatial resolution and strong atom-light coupling by using Eqs. (4.53) and (4.55) (see
Appendix D for technical details). The resulting equation is the following diffusive
stochastic many-body Schrödinger equation:

dρ̂ = − i

�

[
Ĥ , ρ̂

]
dt − N2γ d2

4σ 2

[
X̂c.m.,

[
X̂c.m., ρ̂

]]
dt +

√
N2γ d2

2σ 2

{
X̂c.m. − 〈X̂c.m.〉, ρ̂

}
dW (t),

(4.57)
where we denote the center-of-mass operator as

X̂c.m. =
∑

m mn̂m
N

. (4.58)

A salient feature of this evolution equation is the absence of the relative positional
decoherence term, which does exist for distinguishable particles [170, 183] (see the
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second line in Eq. (4.64) below). This absence qualitatively alters quantum transport
dynamics as demonstrated in the next subsection. We remark that, for practically
indistinguishable particles in measurement (but fundamentally distinguishable), the
same suppression should occur.6 In experiments, such measurement distinguisha-
bility would be relevant when one performs the state-selective imaging [21, 161,
184–187] or the polarization measurement. We may interpret the suppression of the
relative positional decoherence as an emergent decoherence-free subspace (DFS)
resulting from the symmetry in the measurement operator under the exchange of
indistinguishable particles. Toour best knowledge, Eq. (4.57) presents thefirst deriva-
tion of a model of continuous position measurement for quantum many-body sys-
tems. We remark that the degrees of freedom of relative positions are not frozen in
our consideration unlike in a rigid system [183, 188, 189].

Distinguishable particles

We next mention the case for distinguishable particles. As for N noninteracting
distinguishable particles, we introduce the associated measurement operators M̂i (X)

as

M̂i (X) = √
γi
∑
x

f (X − xd)|x〉i i 〈x |, (4.59)

where i labels a particle, γi is a detection rate associated with particle i , f represents
a general point spread function, and x denotes a lattice site. Then, the time-evolution
equation for distinguishable particles is written as

d|ψ〉 = − i

�
Ĥ |ψ〉dt − 1

2

N∑
i=1

∫
dXi

(
M̂†

i (Xi )M̂i (Xi ) − 〈M̂†
i (Xi )M̂i (Xi )〉

)
|ψ〉dt

+
N∑
i=1

∫
dXi

⎛
⎝ M̂i (Xi )|ψ〉√

〈M̂†
i (Xi )M̂i (Xi )〉

−|ψ〉
⎞
⎠dNi (Xi ; t), (4.60)

where dNi (X; t) are the marked point processes corresponding to particle i that
satisfy

dNi (X; t)dN j (X; t) = δi jδ(X − Y )dNi (X; t). (4.61)

Taking the limit of weak spatial resolution in Eq. (4.60), the following diffusive
stochastic time-evolution equation of distinguishable particles can be obtained (see
Appendix E for details)

6A coherent light scattering from isotopes is a typical example.
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dρ̂ = − i

�

[
Ĥ , ρ̂

]
dt −

N∑
i=1

γi d
2

4σ 2

[
x̂i ,

[
x̂i , ρ̂

]]
dt +

N∑
i=1

√
γi d2

2σ 2

{
x̂i − 〈x̂i 〉, ρ̂

}
dWi (t),

(4.62)
where x̂i = ∑

m m|m〉i i 〈m| is the position operator of particle i , and dWi (t)’s are
independent Wiener processes that obey

E[dWi (t)] = 0, dWi (t)dWj (t) = δi, j dt. (4.63)

For the sake of simplicity, let the scattering rate γi = γ be independent of i . We can
then simplify Eq. (4.62) as

dρ̂ = − i

�

[
Ĥ , ρ̂

]
dt − Nγ d2

4σ 2

[
X̂c.m.,

[
X̂c.m., ρ̂

]]
dt +

√
Nγ d2

2σ 2

{
X̂c.m. − 〈X̂c.m.〉, ρ̂

}
dW (t)

− γ d2

4σ 2

N∑
i=1

[
r̂i ,

[
r̂i , ρ̂

]]
dt +

√
γ d2

2σ 2

N∑
i=1

{
r̂i − 〈r̂i 〉, ρ̂

}
dWi (t), (4.64)

where we introduce the center-of-mass operator X̂c.m. = ∑N
i=1 x̂i/N , the rela-

tive coordinate r̂i = x̂i − X̂c.m., and the linear superposition of Wiener processes
dW (t) ≡ √

1/N
∑

i dWi (t) (which is also a Wiener process). We remark that
Eqs. (4.62) and (4.64) are consistent with the known result [170, 183] that can
be obtained by applying a single-particle model [169–173].

Implications to quantum transport dynamics

The distinct role of the measurement distinguishability discussed above can lead to
a unique quantum transport dynamics. In particular, this can be understood from the
peculiar feature of the decoherence rate of the off-diagonal term 〈{nm}|E[ρ̂]|{n′

m}〉
of the density matrix for indistinguishable particles:

�{nm },{n′
m } = N 2γ d2

4σ 2

(
Xc.m. − X ′

c.m.

)2
. (4.65)

This expression results from the second term of the right-hand side of Eq. (4.57).
Here, we represent the center-of-mass coordinate (CMC) of the Fock state {nm}
({n′

m}) as Xc.m. (X ′
c.m.). From the expression (4.65), we can infer the three distinct

time regimes. In the first regime, the coherence between states with different CMCs
is rapidly lost. As a result, the many-particle wavefunction collapses into a state
with a well-localized CMC. The time required for the collapse can be estimated as
4σ 2/(N 2γ d2L2) with L being a typical distance between the CMCs of the super-
posedFock states. In the second regime, although theCMC is localized, the coherence
within the subspace of the Fock states taking similar CMCs can be preserved. This
results from the suppression of the relative positional decoherence in Eq. (4.57). We
term this regime as the inertial regime, as indistinguishable particles exhibit ballistic
transports. Finally, in the long-time regime t � 4σ 2/(γ d2), the coherence between
the nearest Fock states with theminimal CMCdifference δXc.m. = 1/N is eventually
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Fig. 4.13 Numerical simulations of dynamics of two noninteracting particles under minimally
destructive spatial observation. a Unitary dynamics (� = 0). The evolution of the density distribu-
tion is almost not affected by quantum statistics. b–d Quantum dynamics under the spatial obser-
vation for b distinguishable particles, c bosons, and d fermions, calculated for a relatively weak
measurement strength with � = 2.0. The absence of the relative positional decoherence results
in the c bunched and d anti-correlated ballistic motions, while distinguishable particles show (b)
uncorrelated diffusive behavior. Reproduced from Fig. 3 of Ref. [119]. Copyright © 2017 by the
American Physical Society

lost, resulting in a diffusive behavior. The diffusion constant depends on quantum
statistics (see Fig. 4.14a below).

4.3.5 Numerical Demonstrations

We numerically demonstrate the general properties discussed above by focusing on
the minimal case of two noninteracting particles. We calculate the single-trajectory
dynamics by Eq. (4.57) for indistinguishable particles and by Eq. (4.64) for distin-
guishable particles.

Inertial regime

A particularly interesting time regime is the second regime mentioned above, in
which the coherence between relative positions can be preserved, resulting in bal-
listic quantum walks of two particles. To be specific, we choose the initial state to
be two particles that are localized at adjacent sites. For the unitary dynamics, the
evolution of the density distribution is almost not affected by quantum statistics
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(see Fig. 4.13a), where the peaks of the density ballistically propagate with 〈x2〉 =
2J 2t2/�

2. In contrast, under the spatial observation, the quantum dynamics strongly
depends on quantum statistics. Although distinguishable particles show uncorre-
lated diffusive transport (see Fig. 4.13b), indistinguishable particles show ballistic
and correlated transport (see Fig. 4.13c, d). The correlation can be understood as
the standard multi-particle interference between identical particles, which are also
known as bunching (antibunching) of bosons (fermions).

In Fig. 4.13c, two bosons transport in the same direction due to constructive inter-
ference. Because of rapid collapse of the CMC, two bosons form a localized wave
packet. The rapid collapse is characterized by a time scale tcol � (3

√
2�

2/(� J 2))1/3.
In contrast, in Fig. 4.13d, two fermions move in the opposite directions and the CMC
is localized around zero. In this sense, the weakly resolved spatial observation does
not appreciably alter the quantum dynamics of fermions in comparison with the
unitary dynamics (see Fig. 4.13a). This sharply contrasts with the site-resolved mea-
surement [175], in which atoms inevitably transport diffusively due to the strong
measurement backaction.

Diffusive regime

Figure4.14 shows our numerical results for the diffusive regime of the quantum
dynamics under the spatial measurement, where we set the measurement strength �

to be a larger value than the oneused above. Figure4.14aplots the squareσ 2
r of relative

distance between two particles. For distinguishable particles, it is characterized by
the diffusion constant (see Appendix F for its derivation)

Dc = 16J 2σ 2

γ �2d2
. (4.66)

Quantum statistics acts as an effective attractive (repulsive) interaction for bosons
(fermions), leading to a diffusion constant smaller (larger) than Dc. Typical diffusive
trajectory dynamics for bosons and fermions are shown in Fig. 4.14b and c.

While we have so far focused on the simplest two-particle case, our general argu-
ments below Eq. (4.65) hold true for many-particle cases as long as atom interactions
are negligibly weak. We leave it as an interesting open question to study the dynam-
ics of interacting many-body systems under the weak spatial observation formulated
here. At this point, it is worthwhile to remark that, taking the high-resolution limit
σ � d and the ensemble average of Eq. (4.50), we can reproduce the following
Lindblad equation:

d E[ρ̂]
dt

= − i

�
[Ĥ , ρ̂] − γ

2

∑
m

[n̂m, [n̂m, E[ρ̂]]], (4.67)
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Fig. 4.14 Diffusive dynamics under the spatial observation with a relatively strong measurement
strength. a The diffusion constant for distinguishable particles (solid black curve), bosons (blue
dashed curve) and fermions (red dash-dotted curve). Typical diffusive trajectory dynamics is plotted
for b bosons and c fermions. We use � = 16.0 and the results in (a) are obtained by taking the
average over 103 realizations. Reproduced from Fig. 4 of Ref. [119]. Copyright © 2017 by the
American Physical Society

which has been used to study the dissipative dynamics under the site-resolved mea-
surement [107, 130, 131, 176].7 In this dissipative dynamics, if the interaction is
absent, it has been known that the rapid decoherence occurs with the time ∼1/γ ,
resulting in diffusive behavior characteristic of classical random walk [190]. Yet, an
exotic transport such as anomalous diffusion can still appear in the presence of a
nonzero interaction [130, 131]. It would be intriguing to explore such anomalous
behavior in a many-body system under the continuous spatial observation discussed
in this section.

4.4 Experimental Situations in Ultracold Gases

We have developed three general formalisms to discuss the emergent
out-of-equilibrium phenomena in quantum many-body systems under continuous
observation. We have applied them to several specific examples that can be realized
in ultracold atoms. We here briefly discuss experimental situations to implement
those models. Firstly, as a possible experimental implementation of the full-counting
dynamics studied in Sect. 4.1, we propose to realizing our exactly solvable model in
quantum gas microscopy [167] to count the number of quantum jumps. We remark

7Note that the jump operator L̂m = n̂m coincides with the one used for the local measurement
discussed in our study on the thermalization in Sect. 4.2.
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(a) (b)

Fig. 4.15 Quantum many-body systems under a local and b global continuous measurements. a
Hard-core bosons on a lattice are subject to site-resolved position measurement via light scattering.
b The cavity photon field is coupled to a collective mode of atoms and photons emanating from the
cavity are continuously monitored

that one can simultaneously measure the total number of particles and the site-
resolved density-density correlation. In noninteracting models, the density-density
correlation can be expressed as the product of the equal-time correlations and thus
both correlations share the same information. One can realize the one-body loss via a
weak resonant beam. The parameters γ, J, h in the solvablemodel can be experimen-
tally controlled by tuning the intensities of external beams. In practice, we propose
to use 6Li atoms with a beam resonant to the 2S1/2→2P3/2 transition [191].

Secondly, as for our study of thermalization presented in Sect. 4.2, we remark that
both local and global measurement processes assumed for numerical simulations are
experimentally realizable with state-of-the-art techniques of ultracold atoms. The
former associates with the jump operator L̂l = n̂l and corresponds to a site-resolved
position measurement of ultracold atoms via light scattering, as realized in quantum
gas microscopy (see Fig. 4.15a) [167]. The latter associates with the jump operator
L̂ = ∑

l(−1)l n̂l acting on an entire region of the system, which can be realized
by continuously monitoring photons leaking out of a cavity coupled to a certain
collective atomic mode (see Fig. 4.15b) [118].

Finally, we make several remarks on experimental situations in our study on the
minimally destructive spatial observation in Sect. 4.3. In the discussions above, while
a unit collection efficiency of photons has been implicitly assumed, we note that it
is straightforward to generalize our theory to take into account contributions from
uncollected signals. Heating effects can often be suppressed in the deep Lamb-Dicke
regime or by Raman sideband cooling. When heating becomes substantial, one has
to take into account higher bands of an optical lattice. The resolution σ and the
collection efficiency can be controlled via a numerical aperture of lens.
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4.5 Conclusions and Outlook

In this chapter, we have developed three general formalisms to study the out-of-
equilibrium dynamics of many-body systems under continuous observation and
applied them to analyze the dynamics of specific models that can be realized with
ultracold atoms.

In Sect. 4.1, we have introduced the class of open many-body dynamics condi-
tioned on measurement outcomes, which we termed as the full-counting dynamics.
We have shown that the ability to measure individual quanta can reveal previously
unexplored types of many-particle dynamics. In particular, we have demonstrated
that, at the cost of the probabilistic nature of quantummeasurement, correlations can
propagate faster than the LR bound. We have identified the origin of the nonlocal
propagation as the nonorthogonality of eigenstates due to the non-Hermiticity of the
continuously monitored dynamics. Given that the nonorthogonality is a ubiquitous
feature in non-Hermitian systems, we expect that the findings presented here can
also emerge in other types of open many-particle systems. The observed features
become most significant when the nonorthogonality is maximally strong due to an
exceptional point (e.g., in PT-symmetric systems as we demonstrated in the solvable
model). It remains an interesting open question to elucidate roles of interactions or
nonintegrability in the full-counting dynamics. It would be interesting to develop a
possible field-theoretic argument on the quench dynamics of quasiparticles [26, 27].
In fact, the low-energy field theory of the effective Hamiltonian ĤPT in Eq. (4.10)
is a special case of the generalized sine-Gordon model introduced in the previous
Chapter. It is also worthwhile to mention that this class of field theory includes
quantum Liouville theory [192], which has been studied especially in high-energy
physics.

In Sect. 4.2, combining the eigenstate thermalization hypothesis and quantum
measurement theory, we have shown that a generic quantum many-body system
under continuous observation thermalizes at a single trajectory level. The effective
temperature and the dynamics of open many-body systems can be quantitatively
described by the matrix-vector product ensemble (4.40). Also, it can be widely
applied to systems described by a many-body Lindblad master equation such as
dissipative or noisy systems. Our general results are supported by numerical anal-
yses of nonintegrable systems subject to local and global observations, which can
be experimentally realized by quantum gas microscopy and in atom-cavity systems.
There exist several interesting future directions. Firstly, when theHamiltonian is inte-
grable, quantum jumps act as weak integrability-breaking perturbations. It would be
interesting to study thermalization at the trajectory level in such a situation, where
one can expect the appearance of prethermalization if the effects fromquantum jumps
are insignificant. When quantum jumps sufficiently mix the distribution, (possibly)
biased probability weights on nonthermal rare states admitted in the weak variant of
ETH will vanish and ultimate thermalization should happen. While our first attempt
to elucidate this picture has been provided in Sect. 4.2.3, we leave detailed analy-
ses as interesting future problems. It also merits further study to analyze effects of
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measurement on a many-body localized system, where even the weak ETH can be
violated. Secondly, there may exist connections between the random unitary circuit
dynamics [147] and the nonintegrable open trajectory dynamics studied here. Both
dynamics share important common features; they have no energy conservation, obey
the Lindblad master equation upon the ensemble average and satisfy the locality.
In particular, it merits further study to explore the Kardar-Parisi-Zhang universal
behavior [146] or the predicted scrambling dynamics [147] in the present setup.

In Sect. 4.3, we derived the diffusive type of the stochastic Schrödinger equa-
tion (4.57) that governs quantum many-particle dynamics under the weak spatial
observation. Taking the weak and frequent measurement limit, an overall fluctua-
tion in the measurement outcomes has been taken into account as a simple Wiener
stochastic process in the resulting equation. As a consequence, the indistinguisha-
bility of particles leads to a complete suppression of relative positional decoherence.
Analyzing the minimal example with two particles, we have demonstrated that this
suppression results in unique transport dynamics. In particular, there emerges the
time regime in which the coherence between two particles persists even under mea-
surement. In the long-time regime, our results indicate that particles finally exhibit
diffusive behavior, in which particle species can alter the diffusion constants. Our
study suggests several interesting future directions. Since relevant decoherence oper-
ators in Eq. (4.57) now reduce to the center-of-mass coordinate alone, it would be
possible to apply theory of quantum feedback control to quantummany-body systems
under the spatial observation. In this sense, a nondestructive observation discussed
here can be a starting point for realizing real-time feedback control of quantum
many-body systems.

It remains an interesting open question to elucidate a role of interactions in
many-particle systems under the weak spatial observation. For example, we can
use Eq. (4.57) to investigate effects of interactions by switching on the on-site inter-
action term U in the system Hamiltonian Ĥ . Also, our results may be applicable
to preserving coherence in quantum control. Besides such a practical importance, a
minimally destructive observation of many-body systems will also offer interesting
possibilities from a fundamental point of views. For instance, it may provide a tool
to study effects of measurements on strongly correlated phenomena such as quantum
critical phenomena, as we have discussed in the previous chapter.

Appendix A: The Lieb-Robinson Bound

Here we briefly summarize the statement of the Lieb-Robinson bound and describe
its relation to the full-counting dynamics discussed in Sect. 4.1. Lieb and Robin-
son (LR) have shown that, for a unitary time evolution in nonrelativistic quantum
spins (or fermonic particles for spin-1/2 case) on a lattice, there exists a finite group
velocity vLR which bounds the velocity of propagation of information in the system.
Specifically, they have shown the bound
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∥∥∥[ÔA(t), ÔB(0)]
∥∥∥ ≤ cmin(|A|, |B|)

∥∥∥ÔA

∥∥∥
∥∥∥ÔB

∥∥∥ exp
(

− L − vLRt

ξ

)
, (A.1)

where ÔA and ÔB are local operators acing on two subsystems A and B that are
separated by the distance L , ‖ · ‖ is the operator norm, |A| (|B|) denotes the volume
of A (B), vLR is the LR velocity, ξ characterizes the size of the tail in the effective
light cone. The operator Ô(t) denotes the Heisenberg representation. We note that
values of constants c, vLR and ξ cannot be given by the bound in general. Physically,
the bound (A.1) shows that a signal given in region B at t = 0 cannot be transferred
to region A faster than the velocity vLR. Bravyi, Hastings and Verstraete have used
the inequality (A.1) to obtain the bound on the connected equal-time correlation
functions after the quench:

〈�t |ÔA ÔB |�t 〉 < c′(|A| + |B|) exp
(

− L − 2vLRt

χ

)
, (A.2)

where c′ and χ are constants. These relations play crucial roles especially in quan-
tum information science and have laid the cornerstone in studies of gapped many-
body ground states. While the relations (A.1) and (A.2) have been originally derived
for closed quantum systems, later they have been generalized to the open quan-
tum dynamics described by the Lindblad master equation, where the Liouvillian
is assumed be the sum of local operators acting on the density matrix. In partic-
ular, this locality condition is satisfied in the exactly solvable model discussed in
Sect. 4.1 as inferred from the non-Hermitian term−∑

l[(−1)l iγ (ĉ†l+1ĉl + ĉ†l ĉl+1) +
2iγ ĉ†l ĉl ] in the effective Hamiltonian and the jump term J[ρ̂] = 2γ

∑
l[2ĉl ρ̂ĉ†l +

(−1)l(ĉl ρ̂ĉ
†
l+1 + ĉl+1ρ̂ĉ

†
l )]; both of them consist of only local operators.

Appendix B: The Exact Solution of the Lattice Model

We provide technical details on the exact solution of the full-counting dynamics for
the lattice model discussed in Sect. 4.1. To begin with, we diagonalize the effective
Hamiltonian ĤPT in Eq. (4.10). We divide the periodic chain of even length L into
two sublattices (âl = ĉ2l and b̂l = ĉ2l+1 with l = 0, 1, . . . , L/2 − 1) and introduce
their Fourier transforms by

âl =
√

2

L

∑
0≤k<2π

âke
ikl , b̂l =

√
2

L

∑
0≤k<2π

b̂k e
ikl , k = 2πn

(L/2)

(
n = 0, 1, . . . ,

L

2
− 1

)
. (B.1)
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Using these operators, we can rewrite ĤPT as follows:

ĤPT = −
L−1∑
l=0

[(
J+(−1)l iγ

)(
ĉ†l+1ĉl+ĉ†l ĉl+1

)
+(−1)l hĉ†l ĉl

]
(B.2)

=
∑

0≤k<2π

(
â†k b̂†k

)( −h −J − iγ + (−J + iγ )e−ik

−J − iγ + (−J + iγ )eik h

)(
âk
b̂k

)
. (B.3)

Diagonalizing the 2 × 2 matrix for each mode k, we obtain

ĤPT =
∑
k

∑
λ=±

ελ(k)ĝ
†
λk f̂λk , ε±(k) = ±

√
h2 − 4γ 2 + 2J ′2(1 + cos k), ĝ†λk = αR

λ (k)â†k + βR
λ (k)b̂†k ,

(B.4)
where ελ(k) (λ = ±) are two eigenvalues for each mode k with J ′ = √

J 2 + γ 2, ĝ†λk
creates a right eigenvector of ĤPT, i.e., ĤPT ĝ

†
λk |0〉 = ελ(k)ĝ

†
λk |0〉, and (αR

λ (k), βR
λ (k))T

are components of the corresponding right eigenvector of the 2 × 2 non-Hermitian
matrix in Eq. (B.3). The operator f̂λk creates a left eigenvector of ĤPT, i.e.,
〈0| f̂λk ĤPT = 〈0| f̂λkελ(k), and its form is uniquely determined when we impose a
generalized anticommutation relation { f̂λk, ĝ†λ′k ′ } = δk,k ′δλ,λ′ .

We can similarly diagonalize the jump term J[ρ̂] in Eq. (4.9), obtaining

J[ρ̂] = 4
∑
k

∑
λ=±

γλ(k)d̂λk ρ̂ d̂†
λk, γ±(k) = γ

(
1 ±

∣∣∣∣sin
(
k

2

)∣∣∣∣
)

, (B.5)

where we introduce the operators d̂+,k = (−ie
ik
2 âk + b̂k)/

√
2 and d̂−,k = (ie

ik
2 âk +

b̂k)/
√
2.

We next derive the solution of the full-counting dynamics. To do so, we introduce
the interaction picture by

ˆ̃ρ(t) = ei Ĥeff t ρ̂(t)e−i Ĥ †
eff t ,

ˆ̃dλk(t) = ei Ĥeff t d̂λke
−i Ĥeff t . (B.6)

Then, the time-evolution equation becomes

d ˆ̃ρ(t)

dt
= 4

∑
k

∑
λ=±

γλ(k)
ˆ̃dλk(t) ˆ̃ρ(t) ˆ̃d†

λk(t). (B.7)

For the sake of concreteness, we assume that N = L/2 particles are present at time
t = 0. Introducing a projector P̂n onto the subspace containing N − n particles, we
denote an unnormalized densitymatrix accompanying n quantum jumps by �̂(n)(t) =
P̂nρ̂(t)P̂n . Integrating equation (B.7)with the initial condition �̂(n)(0) = 0 for n < N
and noting the relation [P̂n, Ĥeff ] = 0, we obtain the following recursion relation:

ˆ̃�(n)(t) = 4
∫ t

0
dτ

∑
k,λ

γλ(k)
ˆ̃dλk(τ ) ˆ̃�(n−1)(τ )

ˆ̃d†
λk(τ ). (B.8)
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Solving the recursion relation (B.8) iteratively, we obtain the formal solution of
ˆ̃�(n)(t) as

ˆ̃�(n)(t) = 4n
∫ t

0
dtn · · ·

∫ t2

0
dt1

∑
k1λ1,...,knλn

γλ1 (k1) · · · γλn (kn)
ˆ̃dλnkn (tn) · · · ˆ̃dλ1k1 (t1) ˆ̃�(0)(t1)

ˆ̃d†λ1k1 (t1) · · · ˆ̃d†λnkn (tn)

= 4n

n!
∫ t

0
dtn · · ·

∫ t

0
dt1

∑
k1λ1,...,knλn

γλ1 (k1) · · · γλn (kn)
−→
T
[ ˆ̃dλnkn (tn) · · · ˆ̃dλ1k1 (t1)

]
ρ̂(0)

←−
T
[ ˆ̃d†λ1k1 (t1) · · · ˆ̃d†λnkn (tn)

]
, (B.9)

where we use ˆ̃�(0)(t1) = ρ̂(0) in obtaining the second equality, and
−→
T (

←−
T ) denotes

the time-ordering (anti-time-ordering) operator. To perform the time integration, let

us simplify the following time-dependent operator ˆ̃dλk(t):

ˆ̃dλk(t) = ei Ĥeff t d̂λke
−i Ĥeff t = e−2γ t ei ĤPTt d̂λke

−i ĤPTt . (B.10)

Because ĤPT is quadratic in fermionic operators (see Eq. (B.3)), we can solve
Eq. (B.10) by introducing an eigenoperator �̂ηk satisfying the relation [�̂ηk, ĤPT] =
εη(k)�̂ηk (η = ±). We thus obtain

ˆ̃dλk(t) = e−2γ t
∑
η=±

cηλ�̂ηke
−iεη(k)t , (B.11)

where cηλ are the expansion coefficients of d̂λk with respect to �̂ηk’s. Using a right
eigenvector (αR

λ (k), βR
λ (k))T of ĤPT (see Eq. (B.4)), an explicit expression of the

eigenoperators can be given as �̂ηk = αR
η (−k)âk + βR

η (−k)b̂k . We then consider the
following time integration:

∫ t

0
dτ · · · ˆ̃dλk (τ ) · · · ˆ̃d†

λk (τ ) · · · =
∫ t

0
dτ

∑

ηη′
cηλc

∗
η′λe

−4γ τ−iεη(k)τ+iεη′ (k)τ · · · �̂ηk · · · �̂†
η′k · · ·

=
∑

ηη′
cηλc

∗
η′λ

1 − e
−4γ t−iεη(k)t+iεη′ (k)t

4γ + i(εη(k) − iεη′ (k))
· · · �̂ηk · · · �̂†

η′k · · · .

(B.12)

Using Eq. (B.9) and introducing the 2 × 2 matrix γ c
ηη′(k) = ∑

λ γλ(k)cηλc∗
η′λ, we

obtain

ˆ̃�(n)(t)=
∑

η1η
′
1k1 ···ηnη′

nkn

1

n!

[
n∏

i=1

γ c
ηi η

′
i
(ki )

1−e
−4γ t−iεηi (ki )t+iεη′

i
(ki )t

γ + i(εηi (ki ) − εη′
i
(ki ))/4

]
�̂ηnkn · · ·�̂η1k1 ρ̂(0)�̂†

η′
1k1

· · ·�̂†
η′
nkn

.

(B.13)



128 4 Out-of-Equilibrium Quantum Dynamics

Transforming back to the Schrödinger picture by using

�̂(n)(t) = e−i Ĥeff t ˆ̃�(n)(t)ei Ĥ
†
eff t = e−4γ (N−n)t e−i ĤPTt �̂(n)(t)ei Ĥ

†
PTt (B.14)

and the relation e−i ĤPTt�̂ηkei ĤPTt = �̂ηkeiεη(k)t , we obtain the solution of the full-
counting dynamics:

�̂(n)(t)=
∑

η1η
′
1k1 ···ηnη′

nkn

e−4γ (N−n)t

n!

[
n∏

i=1

Dηi η
′
i
(ki ; t)

]
�̂ηnkn · · ·�̂η1k1e

−i ĤPT t ρ̂(0)ei Ĥ
†
PT t �̂

†
η′
1k1

· · ·�̂†
η′
nkn

,

(B.15)
where we introduce the 2 × 2 Hermitian matrix Dηη′ by

Dηη′(k; t) = γ c
ηη′(k)

eiεη(k)t−iεη′ (k)t − e−4γ t

γ + i(εη(k) − εη′(k))/4
. (B.16)

In practice, to calculate the nonequilibrium properties of the system such as cor-
relation functions, we proceed as follows. First, we diagonalize the operators �̂ηk

and �̂
†
η′k in Eq. (B.15) with respect to the indices η and η′. To this end, for each

time t and wavevector k, we numerically diagonalize the following 2 × 2 Hermitian
matrix:

(∑
ηη′ Dηη′(k; t)αR

η (−k)α∗R
η′ (−k)

∑
ηη′ Dηη′(k; t)βR

η (−k)α∗R
η′ (−k)∑

ηη′ Dηη′(k; t)αR
η (−k)β∗R

η′ (−k)
∑

ηη′ Dηη′(k; t)βR
η (−k)β∗R

η′ (−k)

)
. (B.17)

Using its two real eigenvalues λ±,k(t) and the corresponding orthonormal eigenvec-
tors v̂±,k(t), we can simplify Eq. (B.15) as follows:

�̂(n)(t)=e−4γ (N−n)t

n!
∑

η1k1 ···ηnkn

[
n∏

i=1

ληi ki (t)

]
v̂ηnkn (t)· · ·v̂η1k1 (t)e

−i ĤPT t ρ̂(0)ei Ĥ
†
PT t v̂†η1k1 (t)· · ·v̂†ηnkn (t).

(B.18)
The time evolution e−i ĤPT t ρ̂(0)ei Ĥ

†
PT t can be calculated by using Eq. (B.4). Denoting

the initial state as ρ̂(0) = |�0〉〈�0| and expanding it in terms of the right eigenvectors
|�0〉 = ∏

k[
∑

λ ψλk ĝ
†
λk]|0〉, the time evolution is given by

|�t 〉 = e−i ĤPTt |�0〉 =
∏
k

[∑
λ

ψλke
−iελ(k)t ĝ†λk

]
|0〉 =

∏
k

[∑
η

ψv
η(k; t)v̂†ηk(t)

]
|0〉.

(B.19)
In obtaining the last equality, we have expanded the time-dependent state in the
basis of v̂±,k(t) and introduced the corresponding expansion coefficients ψv

η(k; t).
Combining Eqs. (B.18) and (B.19), we can obtain the following expression for the
trace of an unnormalized density matrix:

Tr
[
�̂(n)(t)

] = e−4γ (N−n)t

[∏
k

Nk(t)

]
σn

({ f vk (t)}) , (B.20)
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where we introduce the time-dependent norm factor Nk(t) = ∑
η |ψv

ηk(t)|2 of each
mode k, and σn denotes the n-th symmetric polynomial of f vk (t) ≡ ∑

η ληk(t)|
ψv

ηk(t)|2/Nk(t):

σn
({ f vk (t)}) = (−1)n

(N − n)!
dN−n

dx N−n

∣∣∣∣
x=0

∏
k

(
x − f vk (t)

)
. (B.21)

We note that { f vk (t)} forms a set of N variables with k = 0, 2π/N , . . . , 2π(N −
1)/N .

The full-counting equal-time correlation is now given as

C (n)(l, t) =
Tr
[
ĉ†l ĉ0�̂

(N−n)(t)
]

Tr
[
�̂(N−n)(t)

]

= 2

L

∑
k

e−ik�l/2
[∑

λ ψ∗
λk(t)O

∗R
λ (k) × ∑

λ ψλk(t)αR
λ (k)

Nk(t)

]
σn

({ f vk′ (t)}k′ �=k
)

σn
({ f vk′ (t)}

) ,

(B.22)

wherewechooseO = α (β)when l is even (odd) and introduceψλk(t) = ψλke−iελ(k)t

and

σn
({ f vk ′(t)}k ′ �=k

) = (−1)n

(N − 1 − n)!
dN−1−n

dx N−1−n

∣∣∣∣
x=0

∏
k ′ �=k

(
x − f vk ′(t)

)
. (B.23)

Finally, for the null-jump case n = 0, we can further simplify the expressions
of correlation functions. For example, the unequal-time correlation defined by
C̃ (0)(l, t) = 〈�0|ĉ†l (t)ĉ0(0)|�0〉/〈�t |�t 〉 with ĉ†l (t) ≡ ei Ĥ

†
PTt ĉ†l e

−i ĤPTt can be
expressed as

C̃(0)(l, t) = 2

L

∑
k

∑
λ=±

Oλk
ψ∗

λk e
iελ(k)t−ik�l/2
Nk (t)

with Oλk = O∗R
λ (k)

∑
η

ψηkα
R
η (k), (B.24)

which gives Eq. (4.16) in Sect. 4.1.

Appendix C: Subextensive Energy Fluctuation
in the Matrix-Vector Product Ensemble

We here show the subextensiveness of the energy fluctuation in the matrix-vector
product ensemble introduced in Sect. 4.2:
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ρ̂M = �M[ρ̂eq]
Z(M)

= 1

Z(M)

∑
a

[Vmn · · ·Vm1 peq]a|Ea〉〈Ea|. (C.1)

We recall that �M=∏n
i=1

(
� ◦ Lmi ◦ �

)
with Lm[Ô]= L̂m Ô L̂†

m , �[Ô]=∑
a P̂a Ô P̂a and P̂a =|Ea〉〈Ea|, and Z(M) = ∑

a[Vmn · · ·Vm1 peq]a is a normaliza-
tion constant. We assume that thermal eigenstates satisfy the cluster decomposition
property (CDP) for local operators Ôx,y :

lim|x−y|→∞Tr[Ôx Ôy P̂a] − Tr[Ôx P̂a]Tr[Ôy P̂a] = 0, (C.2)

which is a fundamental property that lies at the heart of quantum many-body theory
and should hold true for any physical states (with only a few exceptions such as
(long-lived) macroscopic superposition states). From this assumption together with
the ETH, it follows that any diagonal ensemble with a strongly peaked energy distri-
bution satisfies the CDP in the thermodynamic limit. In particular, the initial thermal
equilibrium state ρ̂eq also satisfies the CDP since its energy fluctuation (i.e., the
standard deviation) is subextensive by definition. Below we show that if an energy
fluctuation in an ensemble ρ̂ diagonal in the energy basis is subextensive and thus
ρ̂ satisfies the CDP, then a post-measurement ensemble ρ̂m ∝ �m[ρ̂] after a single
quantum jump with �m = � ◦ Lm ◦ � also satisfies these conditions. By induction
it then follows that an energy fluctuation of the density matrix (C.1) is also subex-
tensive.

Local measurement

Wefirst show the subextensiveness of the energy fluctuation in the post-measurement
ensemble ρ̂m for a local measurement, in which a measurement operator L̂m acts on
a local spatial region. The variance of energy is given as

(�E)2 = Tr[Ĥ2ρ̂m ] − (Tr[Ĥ ρ̂m ])2 = 1

(Z(m))2

[
Z(m)Tr[Ĥ2Lm [ρ̂]] −

(
Tr[ĤLm [ρ̂]]

)2]
, (C.3)

where Z(m) = Tr[�m[ρ̂]] is a normalization constant. We express the Hamiltonian
and measurement operators as sums of local operators:

Ĥ =
∑
x

ĥx , L̂m =
∑
x∈Dm

l̂x , (C.4)

whereDm denotes a local spatial region on which L̂m acts. To rewrite Eq. (C.3), we
calculate the quantity

�xy ≡ 1

(Z(m))2

[
Z(m)Tr[ĥx ĥ yLm[ρ̂]] − Tr[ĥxLm[ρ̂]]Tr[ĥ yLm[ρ̂]]

]
(C.5)

= 1

(〈L̂†
m L̂m〉)2

[
〈L̂†

m L̂m〉〈L̂†
mĥx ĥ y L̂m〉 − 〈L̂†

mĥx L̂m〉〈L̂†
mĥy L̂m〉

]
, (C.6)
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where we denote Tr[·ρ̂] = 〈·〉. Using the condition [l̂x , ĥ y] = 0 for x �= y, we obtain
in the limit |x − y| → ∞

〈L̂†
mĥx ĥ y L̂m〉 = 〈L̂†

m L̂mĥx ĥ y〉 � 〈L̂†
m L̂m〉〈ĥx 〉〈ĥ y〉, (C.7)

〈L̂†
mĥx L̂m〉〈L̂†

mĥy L̂m〉 � 〈L̂†
m L̂m〉2〈ĥx 〉〈ĥ y〉. (C.8)

Here, we use the CDP of ρ̂ in deriving the last expressions. We thus obtain
lim|x−y|→∞ �xy = 0. It follows that the standard deviation of energy is subexten-
sive:

lim
V→∞

�E

V
= lim

V→∞

√∑
xy �xy

∑
xy 1

= 0. (C.9)

In particular, it is physically plausible to assume that �xy decays exponentially fast
or at least faster than V−1 in the thermodynamic limit. Under this condition, we
obtain the square-root scaling:

�E �
√∑

x

�xx ∝ O(
√
V ). (C.10)

Global measurement

We next consider a global measurement, in which a measurement operator acts on
an entire region of the system. As Dm is independent of a label m, we abbreviate
a label and denote a measurement operator as L̂ = ∑

z l̂z for the sake of simplicity.
It turns out that we need to discuss the two different cases separately depending on
whether or not an expectation value limV→∞〈L̂〉/V vanishes in the thermodynamic
limit.

We first consider the case in which 〈L̂〉 scales as

〈L̂〉 = 〈
∑
z

l̂z〉 ∝ O(V ), (C.11)

so that the expectation value limV→∞〈L̂〉/V does not vanish. From the CDP of ρ̂, the
leading term in �xy defined in Eq. (C.5) can be estimated in the limit |x − y| → ∞
as

�xy = 1

〈L̂† L̂〉2
(

〈
∑
z,w

l̂†z l̂w〉〈
∑
z,w

l̂†z ĥx ĥ y l̂w〉 − 〈
∑
z,w

l̂†z ĥx l̂w〉〈
∑
z,w

l̂†z ĥ y l̂w〉
)

(C.12)

� 1

|〈L̂〉|4
[
(〈l̂†x 〉〈ĥx 〉 − 〈l̂†x ĥx 〉)(〈l̂†y〉〈ĥ y〉 − 〈l̂†y ĥ y〉)〈L̂〉2 + c.c.

]
∝ O

(
1

V 2

)
. (C.13)
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We thus conclude that the standard deviation of energy is subextensive:

�E =
√∑

x

�xx +
∑
x �=y

�xy �
√∑

x

�xx ∝ O(
√
V ). (C.14)

We next consider the other case in which an expectation value of L̂/V vanishes
in the thermodynamic limit. To be specific, we impose the following condition

〈L̂〉 = 〈
∑
z

l̂z〉 ∝ o(
√
V ). (C.15)

For instance, in the numerical example presented in Sect. 4.2.3, an expectation value
of L̂ = ∑

m(−1)mn̂m with respect to arbitrary energy eigenstate is exactly zero, and
thus the condition (C.15) is satisfied. Using this condition, we can rewrite 〈L̂† L̂〉 as

〈L̂† L̂〉 = 〈
∑
z,w

l̂†z l̂w〉 �
∑
z,w

(〈l̂†z l̂w〉 − 〈l̂†z 〉〈l̂w〉) �
∑
z

(
〈l̂†z l̂z〉 − 〈l̂†z 〉〈l̂z〉

)
∝ O(V ).

(C.16)
Here, in the first approximate equality we add the o(V ) contribution in Eq. (C.15),
and in the second approximate equality we use the CDP of ρ̂ and the scaling (C.15).
The leading contribution in �xy of Eq. (C.12) is obtained as

�xy � 〈l̂†x ĥx 〉〈ĥ y l̂y〉 + c.c.
∑

z

(
〈l̂†z l̂z〉 − 〈l̂†z 〉〈l̂z〉

) ∝ O
(
1

V

)
, (C.17)

again leading to the subextensive energy fluctuation:

�E =
√∑

x

�xx +
∑
x �=y

�xy ∝ O(
√
V ). (C.18)

Appendix D: Minimally Destructive Spatial Observation
of Indistinguishable Particles

We here provide details about taking the limit of strong atom-light coupling limit
and weak-spatial resolution of Eq. (4.50), resulting in the stochastic differential
equation (4.57) describing the random time evolution of indistinguishable atoms
under minimally destructive spatial observation. From Eqs. (4.50) and (4.51), we
obtain the following master equation:
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dρ̂ =− i

�

[
Ĥ , ρ̂

]
+D[ρ̂]dt+

∫
dX

(
M̂(X)ρ̂ M̂†(X)

〈M̂†(X)M̂(X)〉−ρ̂

)(
dN (X; t) − 〈M̂†(X)M̂(X)〉

)
,

(D.1)
where we define the dissipator by

D[ρ̂] =
∫
dX

(
M̂(X)ρ̂ M̂†(X)− 1

2

{
M̂†(X)M̂(X), ρ̂

})
. (D.2)

To be specific, we assume the measurement operator

M̂(X) =
√

γ√
πσ 2

∑
m

exp

[
− (X − md)2

2σ 2

]
n̂m, (D.3)

where the point-spread function is chosen to be a Gaussian function. Then, the
dissipator D[ρ̂] in Eq. (D.2) can be approximated as

D[ρ̂] � −γ

2

∑
m,l

(
1 − (m − l)2d2

4σ 2

[
n̂l ,

[
n̂m , ρ̂

]]
)

= − N2γ d2

4σ 2

[
X̂c.m.,

[
X̂c.m., ρ̂

]]
,

(D.4)
where X̂c.m. = ∑

m n̂m/N is the center-of-mass operator with N being the total num-
ber of atoms and we take the limit of weak-spatial resolution, i.e., we assume that
interference peaks of particles cannot be spatially resolved. In other words, this con-
dition is equivalent to the requirement for matrix elements of n̂mn̂l ρ̂ + ρ̂n̂l n̂m −
2n̂m ρ̂n̂l to rapidly vanish in |m − l| > σ/d. Also, we employ the conservation of the
particle number

∑
m n̂m = N Î to derive the last equality. Equation (D.4) gives the

first line in the time-evolution Eq. (4.57).
We next take the same limit of the last term in Eq. (D.1). To derive Eq. (4.57), we

have to show that, in this limit, the following contribution goes to zero:

∫
dX R(X; t) dN (X; t) − 〈M̂†(X)M̂(X)〉dt√

〈M̂†(X)M̂(X)〉
�
∫

dX R(X; t)dW (X; t). (D.5)

Here we employ (4.55) and define

R(X; t) =
√

〈M̂†(X)M̂(X)〉
(
M̂(X)ρ̂ M̂†(X)

〈M̂†(X)M̂(X)〉 −ρ̂− d√
2 σ

{
X̂c.m.−〈X̂c.m.〉, ρ̂

})
. (D.6)

The Gaussian point-spread function in M̂(X) can be expanded as

∑
m

e
− (X−md)2

2σ2 n̂m � e
− X2

2σ2
∑
m

(
1 + mXd

σ 2

)
n̂m = e

− X2

2σ2 N

(
Î + Xd

σ 2 X̂c.m.

)
. (D.7)
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We can justify the use of the approximation (D.7) in Eq. (D.5) as follows. First, in
the weak-spatial resolution limit, particles are assumed to be positioned around the
site m = 0 without loss of generality. Since a cluster size of particles is smaller than
σ , matrix elements of n̂m ρ̂n̂l in the Fock basis are vanishingly small if m > σ/d
or l > σ/d. Thus, higher-order terms of m in Eq. (D.7) can be neglected. Second,
we note that higher-order terms of X can be also neglected. The reason is that, after
performing the integration over X , they lead to higher-order terms of d/σ that can
be neglected in the weak-spatial resolution limit d/σ → 0. We then approximate the
first two terms in Eq. (D.6) as

∫ ∞

−∞
dX

⎛
⎝ M̂(X)ρ̂ M̂†(X)√

〈M̂†(X)M̂(X)〉
−
√

〈M̂†(X)M̂(X)〉ρ̂
⎞
⎠ dW (X; t)

�
√

N 2γ d2

√
πσ 5

∫ ∞

−∞
dXdW (X; t)Xe− X2

2σ2

{
X̂c.m.−〈X̂c.m.〉, ρ̂

}

=
√

N 2γ d2

2σ 2

{
X̂c.m. − 〈X̂c.m.〉, ρ̂

}
dW (t). (D.8)

Here we note that a linear superposition of Wiener stochastic processes is a Wiener
process:

∫ ∞

−∞
dXdW (X; t)Xe− X2

2σ2 =
√

σ 3
√

π

2
dW (t). (D.9)

Since Eq. (D.8) cancels out the last term in Eq. (D.6), we show that Eq. (D.5) goes
to zero in the weak-spatial resolution limit. The resulting time-evolution equation is
Eq. (4.57). In the case of a single particle, Eq. (4.57) reproduces the previous results.
The derivation presented here is also applicable to a general point spread function if
one replaces σ by the effective resolution introduced in Eq. (4.49).

Appendix E: Minimally Destructive Spatial Observation
of Distinguishable Particles

We provide the derivation of Eq. (4.62) describing the motions of distinguishable
particles under the spatial observation. Starting from Eq. (4.60), we use (4.61) to
obtain the master equation:

dρ̂ =− i

�

[
Ĥ , ρ̂

]
+

N∑
i=1

[
Di [ρ̂]dt+

∫
dXi

(
M̂i (Xi )ρ̂ M̂

†
i (Xi )

〈M̂†
i (Xi )M̂i (Xi )〉

−ρ̂

)(
dNi (Xi ; t) − 〈M̂†

i (Xi )M̂i (Xi )〉
)]

,

(E.1)
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where we introduce the dissipator as

Di [ρ̂] =
∫
dX

(
M̂i (X)ρ̂ M̂†

i (X)− 1

2

{
M̂†

i (X)M̂i (X), ρ̂
})

. (E.2)

In the same manner as in Appendix 4.5, the dissipator Di [ρ̂] in the weak-spatial
resolution limit can be obtained as

Di [ρ̂] � −γi d2

4σ 2

[
x̂i ,

[
x̂i , ρ̂

]]
, (E.3)

where x̂i = ∑
m m|m〉i i 〈m| is the position operator of each particle. This contribution

provides the first line in Eq. (4.62).
To derive Eq. (4.62), we have to show that, in the weak resolution limit, the

following contribution goes to zero:

∫
dX Ri (X; t) dNi (X; t) − 〈M̂†

i (X)M̂i (X)〉dt√
〈M̂†

i (X)M̂i (X)〉
�
∫

dX Ri (X; t)dWi (X; t),

(E.4)
where we introduce

Ri (X; t) =
√

〈M̂†
i (X)M̂i (X)〉

(
M̂i (X)ρ̂ M̂†

i (X)

〈M̂†
i (X)M̂i (X)〉 −ρ̂− d√

2 σ

{
x̂i −〈x̂i 〉, ρ̂

})
.

(E.5)
We can decompose the total density matrix ρ̂ into the product of ρ̂i for each particle
i , as the particles are assumed to be noninteracting and not entangled in the initial
state (see Sect. 4.3.4). The convergence of Eq. (E.4) thus follows from applying the
derivation (D.8) in the previous Appendix to the case of a single particle.

Appendix F: Diffusion Constant for Distinguishable Particles

We provide the derivation of the diffusion constant (4.66) for distinguishable parti-
cles. To begin with, let us first study a single-particle case. Denoting 〈n|ρ̂|m〉 = ρn,m

with |n〉 being a particle localized at site n, the master equation can be written as

ρ̇n,m = i J
(
ρn+1,m + ρn−1,m − ρn,m+1 − ρn,m−1

) − �

4
(n − m)2ρn,m . (F.1)

In the diffusive regime, we can neglect the off-diagonal elements between remote
lattice sites. It thus suffices to take into account the off-diagonal elements with neigh-
boring sites ρn,n±1. Using the stationary condition ρ̇n,n±1 � 0, we obtain
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ρn,n±1 � 4i J

�

(
ρn±1,n±1 − ρn,n

)
,

ρn±1,n � −4i J

�

(
ρn±1,n±1 − ρn,n

)
. (F.2)

Using these relations in the master equation for the diagonal elements ρn,n , we get

ρ̇n,n = i J
(
ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1

)

� 8J 2

�

(
ρn+1,n+1 − 2ρn,n + ρn−1,n−1

)
. (F.3)

This is nothing but the diffusion equation with the diffusion constant 8J 2/�.
In the case of two distinguishable particles, the variance of the relative distance

is σ 2
r = 〈(x̂1 − x̂2)2〉 = 〈x̂21 〉 + 〈x̂22 〉 − 2〈x̂1〉〈x̂2〉 with x̂1(2) being the position of par-

ticle 1 (2). In the numerical simulations presented in this chapter, we assume the
localized initial state and thus the expectation values of 〈x̂1,2〉 remain to be their
initial values: 〈x̂1〉0 = 0 and 〈x̂2〉0 = 1. In the long-time limit, we then get

σ 2
r = 32J 2t

�
≡ 2Dct, (F.4)

which completes the derivation of the expression (4.66) of the diffusion constant Dc.
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Chapter 5
Quantum Spin in an Environment

Abstract A quantum system that strongly correlates with an external world is
ubiquitous in nature. There, one has to deal with the strong entanglement between
the system and the environment. Ideally, this can be achieved by explicitly taking
into account all the degrees of freedom of the environment rather than eliminating
them as done in the master-equation approach. In this chapter, we move on to studies
of in- and out-of-equilibrium physics in such a strongly correlated open quantum
system by focusing on its most fundamental paradigm, that is, a quantum impurity.
We develop a versatile and efficient theoretical approach to study ground-state and
out-of-equilibrium properties of generic quantum spin-impurity systems. In partic-
ular, we introduce a new canonical transformation that can completely disentan-
gle the localized spin and the environmental degrees of freedom. After introducing
our general variational formalism for a fermionic environment, we benchmark our
approach by comparing it with other numerical and analytical results in both in- and
out-of-equilibrium regimes. We also reveal new types of nonequilibrium dynamics
such as long-time crossover dynamics mimicking nonmonotonic renormalization
group flows, which has been difficult to study in other methods. We propose a possi-
ble experiment to test the predicted dynamics by using quantum gas microscopy. We
also generalize our approach to a bosonic environment and apply it to study a novel
type of strongly correlated systems realized in the state-of-the-art experiments of
Rydberg molecules, which have been otherwise challenging to analyze in previous
theoretical approaches.

Keywords Open quantum systems · Quantum impurity · Strongly correlated
systems · Kondo effect · Rydberg atoms

5.1 Introduction

Understanding physics of quantum systems open to an external world has now
become one of the most important problems in physics from both fundamental
and application-oriented points of views. Open quantum systems can be studied
based on the master equation or the quantum trajectory approach if the correlation
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between the system and an external observer or environment is vanishingly small
and thus the information flow is unidirectional (i.e., the Born-Markov approxima-
tion is valid), as typically realized in quantum-optical setups. Yet, in a variety of
physical systems ranging from solid-state materials to artificial quantum simulators,
it is ubiquitous that a quantum system can be strongly correlated with an external
world. In such a case, the strong system-environment entanglement invalidates the
Markovian description and poses a theoretical challenge. A quantum impurity is the
most fundamental class of such strongly correlated open quantum systems.

A variety of problems corresponding to quantum impurities have been at the
forefront of condensedmatter physics, atomic,molecular and optical (AMO)physics,
and quantum information. For instance, they have played central roles to understand
decoherence in quantum nanodevices [1–3], strongly correlated physics in heavy
fermion materials [4–8], transport phenomena in mesoscopic systems [9–20], and
laid the basis of dynamical mean-field theory [21] (DMFT). To understand physics
of these vastly different systems, it is essential to reveal the role of entanglement
between the impurity and the environment; this is best illustrated by the formation of
the Kondo-singlet state [22], which is a many-body bound state between a localized
spin-1/2 impurity and itinerant fermions in the environment.

The equilibrium properties of quantum impurities, especially for the Kondo prob-
lem, are now theoretically well understood from the perturbative renormalization
group (RG) [23], Wilson’s numerical renormalization group (NRG) [24–30] and the
exact solution via the Bethe ansatz [31–33]. However, its nonequilibrium property
is still a challenging and active area of research in both experiments [34–39] and
theory [40–80]. Previous theoretical works include the real-time Monte Carlo calcu-
lations [40–44], the perturbative RG analyses [45–49], the Hamiltonian RG approach
[50–52], the coherent-state expansion [53–55], the density-matrix renormalization
group (DMRG) [56–63], the time-dependent NRG (TD-NRG) [64–70], the time
evolving decimation (TEBD) [71, 72], and analytical solutions [73–80]. Despite the
rich variety of the methods, revealing the long-time many-body dynamics remains a
major challenge. Due to high computational cost, the previous theoretical approaches
become increasingly challenging at longer times. For instance, numerical methods
based on the matrix-product states (MPS) become very challenging in long-time
regimes due to the requirement of an exponentially large bond dimension [81]. Also,
in TD-NRG, the logarithmic discretization has been argued to cause artifacts in
long-time regimes [82]. Another challenge is to reveal many-body spatiotemporal
dynamics of the environmental degrees of freedom, as they are often replaced by
a simplified effective bath or integrated out so that their microscopic details are
lost. Furthermore, the previous methods are restricted to only a particular class of
quantum impurity problems, where a type of interactions between the impurity and
surrounding particles is specified and bath particles are often assumed to move bal-
listically. It is not obvious how one could extend the previous techniques to more
generic situations including strong disorder and nonlocal couplings to the impurity,
which are relevant to state-of-the-art experimental systems realized in AMOphysics,
condensed matter physics and quantum information. These challenges call for a new
theoretical approach to solving quantum impurity problems.
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Avariational approach is one of themost powerful and successfulmethods to solve
quantum many-body problems. Its central guiding principle is to design quantum
states that can capture essential physics behind the problems in an efficient way
with avoiding the exponential complexity of the exact wavefunction. For example, a
Bose-Einstein condensate (BEC) in both in- and out-of-equilibrium regimes can be
well described by a coherent state [83], and low-temperature equilibrium physics of
one-dimensional local Hamiltonians can be efficiently described by the MPS [84].
The essential physical feature in the former (latter) is the presence of the off-diagonal
long-range order (the small amount of entanglement), which allows one to develop
an efficient description avoiding the exponential complexity.

Over the last several decades, a variational approach has also proven useful to
understand quantum impurity systems. Studies in this direction date back to Tomon-
aga’s meson-nucleon theory in 1947 [86]. Lee, Low and Pines (LLP) then applied
it to analyzing a polaron, which is a mobile spinless impurity dressed by phonon
excitations [87]. The essential feature in quantum impurity problems is the presence
of the entanglement between the impurity and the environment. The key idea by LLP
is to take into account this entanglement by introducing the unitary transformation
(now known as the LLP transformation)

ÛLLP = e−i x̂·P̂bath , (5.1)

where x̂ is the position operator of the impurity and P̂bath is the total momentum
operator of phonons. In the laboratory frame, the total momentum P̂tot = p̂ + P̂bath

of the impurity and the environment is conserved. Yet, via the LLP transformation,
the conserved quantity turns out to be the momentum operator p̂ of the impurity:

Û †
LLPP̂totÛLLP = p̂. (5.2)

This indicates that, after the transformation, one can take p̂ as a classical variable,
i.e, the impurity dynamics is completely frozen. The LLP transformation then leads
to the following variational states

|�tot(ξ)〉 = ÛLLP|p〉|�bath(ξ)〉, (5.3)

where |p〉 is a momentum eigenstate of the impurity, and |�bath(ξ)〉 is a bath wave-
function with variational parameters ξ . For instance, one can choose a bath state
|�bath〉 to be the product of coherent states as in the original papers [86, 87]. While
such an efficiently parametrizable environment wavefunction |�bath(ξ)〉 is factor-
izable and thus does not incorporate the entanglement, the variational states (5.3)
can efficiently represent the impurity-environment entanglement via the transfor-
mation (5.1). This class of variational states has proven very successful to reveal
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Fig. 5.1 Disentangling canonical transformation in quantum impurity problems. a The impu-
rity spin interacts with environmental particles in an arbitrary way, leading to a strong impurity-
environment entanglement. b The disentangling canonical transformation allows one to move on
to the “corotating” frame of the impurity, where the impurity dynamics is frozen at the expense
of generating an effective interaction among bath particles. Reproduced from Fig. 1 of Ref. [85].
Copyright © 2018 by the American Physical Society

ground-state properties and nonequilibrium dynamics of mobile impurities and laid
the foundation for successive studies in polaron physics1 [88–107].

The aim of this chapter is to generalize this variational approach to a local-
ized spin-impurity model (SIM), which is a fundamental paradigm of strongly
correlated open quantum systems (see Fig. 5.1a). Introducing a new disentangling
transformation, we present a versatile and efficient variational approach to study-
ing in- and out-of-equilibrium properties of generic SIM. In Sect. 5.2, we present
the disentangling transformation that completely decouples the impurity and the
environment (see Fig. 5.1b for an illustration). Different from the LLP transforma-
tion (5.1), constructing the canonical transformation for SIM is not obvious due
to the noncommutativity of the spin operators. We explain a general strategy to
obtain the disentangling transformations and apply it to single-impurity systems,
two-impurity systems and the Anderson model. In Sect. 5.3, combining the canon-
ical transformation with fermionic Gaussian states, we introduce a family of vari-
ational states that can efficiently capture nontrivial impurity-environment entangle-
ment. We present a set of nonlinear equations of motions to reveal ground-state
properties and nonequilibrium dynamics of generic SIM. In Sect. 5.4, applying
the present theoretical approach to the anisotropic Kondo model, we benchmark

1In the next chapter, we will apply this approach to discuss new types of nonequilibrium dynamics
of magnetic polarons.
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it with the MPS, the Bethe-ansatz solution and the known nonperturbative scal-
ings. Besides the ability to efficiently represent nontrivial impurity-environment cor-
relations, our approach reveals new types of long-time nonequilibrium dynamics
that have been difficult to obtain in the previous approaches. In Sect. 5.5, apply-
ing our approach to the two-lead Kondo model, we analyze its transport proper-
ties and nonequilibrium spatiotemporal dynamics and demonstrate that the obtained
results are consistent with the previous studies [58, 69, 80, 108]. In Sect. 5.6, we
propose a possible experiment to realize the anisotropic Kondo model in ultra-
cold gases. In particular, we argue that the long-time spatiotemporal dynamics pre-
dicted in our theory can readily be tested by the current techniques of quantum
gas microscopy. In Sect. 5.7, we generalize our theoretical approach to a bosonic
environment. This can be done by combining the canonical transformation introduced
in Sect. 5.2 with the bosonic Gaussian states. We apply the variational approach to
a novel type of quantum impurity problems, namely, the Rydberg central spin prob-
lem [109–111], in which the impurity spin interacts with surrounding bosons via
long-range couplings. We present numerical results on the absorption spectrum and
the magnetization dynamics, which can be directly tested by the state-of-the-art
experiments in ultracold gases. Finally, we conclude this chapter with an outlook in
Sect. 5.8.

5.2 Disentangling Canonical Transformation

We here introduce a disentangling canonical transformation of SIM. Let us first out-
line the general idea here. The central point is that a spin-1/2 operator can completely
be decoupled from the environmental degrees of freedom if a generic Hamiltonian
Ĥ has some parity symmetry P̂, i.e., [Ĥ , P̂] = 0 with P̂

2 = 1. The reason is that,
as both the spin-1/2 operator and the parity operator have the same set of eigen-
values {1,−1}, we can always construct a unitary transformation Û that transforms
the conserved parity P̂ to a spin-1/2 operator via (compare Eq. (5.4) with the LLP
transformation (5.2))

Û †
P̂Û = n · σ̂ , (5.4)

where σ̂ = (σ̂ x , σ̂ y, σ̂ z)T is a vector of the Paulimatrices andn is a three-dimensional
real unit vector. As a result, the transformedHamiltonian commutes with the spin-1/2
operator [Û † ĤÛ ,n · σ̂ ] = 0, meaning that the spin dynamics is frozen, or said dif-
ferently, the transformed Hamiltonian conditioned on a classical number n · σ̂ = ±1
only contains the environmental degrees of freedom. While a construction of such a
unitary transformation Û is not obvious due to the noncommutativity of the spin oper-
ators,wefind its explicit and simple form (seeEq. (5.13) below).Wecan then combine
this disentangling transformation with an efficiently parametrizable bath wavefunc-
tion and introduce a family of variational states to efficiently encode the nontrivial
entanglement between the localized spin-1/2 impurity and the environment.
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5.2.1 Disentangling a Single Spin-1/2 Impurity
and an Environment

We first apply the disentangling transformation to a localized spin-1/2 impurity cou-
pled to a fermionic environment:

Ĥ = Ĥbath + Ĥimp + Ĥint, (5.5)

where

Ĥbath =
∑

lmα

�̂
†
lαhlm�̂mα (5.6)

is a noninteracting fermionic bath Hamiltonian, �̂
†
lα(�̂lα) creates (annihilates) a

fermion with an energy level l = 1, 2, . . . , N f and a spin-z component α =↑,↓,
and hlm is the (l,m) component of an arbitrary N f × N f Hermitian matrix corre-
sponding to a single-particle bath Hamiltonian. The impurity Hamiltonian

Ĥimp = −hzŝ
z
imp (5.7)

describes a magnetic field hz acting on the spin-1/2 impurity operator ŝγ

imp = σ̂
γ

imp/2
with γ = x, y, z and

Ĥint = ŝimp · �̂ (5.8)

represents a generic impurity-bath interaction, where �̂ is the bath-spin density
operator including the interaction couplings

�̂γ = 1

2

∑

lmαβ

gγ

lm�̂
†
lασ

γ

αβ�̂mβ, (5.9)

where the impurity-bath couplings gγ

lm labeled by γ = x, y, z are determined by arbi-
trary N f × N f Hermitian matrices; they can be long-range and anisotropic. Paradig-
maticmodelswith the interactionHamiltonian that can bewritten asEq. (5.8) include,
e.g., the central spin model [112] and the Kondo-type Hamiltonians [22].

The canonical transformation can be constructed on the basis of the parity sym-
metry hidden in the total Hamiltonian (5.5):

P̂ = σ̂ z
impP̂bath, (5.10)

where P̂bath is a bath parity defined by

P̂bath = e(iπ/2)(
∑

l σ̂
z
l +N̂ ) = eiπ N̂↑ . (5.11)
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Here, σ̂
γ

l =∑αβ �̂
†
lασ

γ

αβ�̂lβ with γ = x, y, z is a spin density for a bath mode l,

N̂ is the total bath particle number, and N̂↑ is the number of spin-up fermions. It is
easy to check P̂

2
bath = P̂

2 = 1. The parity symmetry [Ĥ , P̂] = 0 follows from the fact
that Ĥ is invariant with respect to the rotation around the z axis by π , transforming
impurity and bath spins as P̂

−1σ̂ x,y
P̂ = −σ̂ x,y while keeping P̂

−1σ̂ z
P̂ = σ̂ z . We use

this conserved parity to introduce the disentangling transformation Û obeying

Û †
P̂Û = Û †

(
σ̂ z
impP̂bath

)
Û = σ̂ x

imp. (5.12)

Then, in the transformed frame, the impurity spin turns into a conserved quantity.2

We find an explicit and simple form of a unitary transformation Û satisfying the
condition (5.12) as

Û = exp

[
iπ

4
σ̂

y
impP̂bath

]
= 1√

2

(
1 + i σ̂ y

impP̂bath

)
. (5.13)

Applying this unitary transformation to the Hamiltonian, we obtain the transformed

Hamiltonian ˆ̃H =Û † ĤÛ as

ˆ̃H = Ĥbath − hzŝ
x
impP̂bath + ŝ ximp�̂

x + P̂bath

(
− i�̂ y

2
+ ŝ ximp�̂

z

)
. (5.14)

It obeys [ ˆ̃H, σ̂ x
imp] = 0 by construction. The impurity can be taken as a conserved

classical number σ x
imp = ±1. We remark that the disentangling transformation is

also applicable to a bosonic bath (see Sect. 5.7) and to an interacting bath having
an arbitrary bath spin. For the sake of simplicity, we omit the magnetic-field term
acting on the bath.

The decoupling of the impurity came at the expense of generating interactions
among environmental particles. This can be inferred from the second and the last
terms on the right-hand side of Eq. (5.14). Physically, the emergent bath interactions
indicate effective spin-exchange interactions between bath fermions mediated by
the impurity spin. This situation is analogous to the generation of a nonlocal phonon
coupling after the LLP transformation in the mobile spinless impurity [87].We stress
that the decoupling of the spin-1/2 operator has a broad applicability, as it is based on
the elemental parity symmetry in the Hamiltonian. For example, wewill demonstrate
its extension to two-impurity systems and the single-impurity Anderson model later.

We remark that, at zero field hz = 0 with an even particle number N , there are two
degenerate energy sectors associated with the conserved quantity σ x

imp = ±1. This
can be shown by noticing the fact that the two sectors in Eq. (5.14) relate to each
other by Û y

bath = e(iπ/2)
∑

l σ̂
y
l , which transforms the bath spins via σ̂

x,z
l → −σ̂

x,z
l . To

2While we here specify n = (1, 0, 0)T in Eq. (5.4), other choices result in the same class of varia-
tional states.
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the best of our knowledge, this exact degeneracy in a generic case of SIM has not
previously been discussed although there have been works on some exactly solvable
cases [31–33, 113].

Employing the unitary transformation, we will introduce the following family of
variational states (compare it with Eq. (5.3) for the LLP transformation)

|�〉 = Û |±x 〉imp|�bath〉
= |↑ 〉impP̂±|�bath〉 ± |↓ 〉impP̂∓|�bath〉, (5.15)

where |�bath〉 is a variational bath wavefunction, |±x 〉imp is the eigenstate of the
impurity spin with σ̂ x

imp = ±1, and P̂± = (1 ± P̂bath)/2 is the projection onto the
subspace with even or odd bath parity. As we detail later, the variational states can
capture the strong impurity-environment entanglement in a very efficient manner.
It is worthwhile to make a remark on the unbiasedness of the variational states;
we use no a priori knowledge about physical properties of the underlying impurity
model (e.g., the formation of the Kondo-singlet state). The unitary transformation Û
contains neither values of parameters in the Hamiltonian nor variational parameters.
Although we will specify |�bath〉 as the Gaussian states later, a family of variational
states (5.15) is still unbiased because the Gaussian states include all the possible
two-particle excitations in an unbiased way.

5.2.2 Disentangling Two Spin-1/2 Impurities
and an Environment

It is possible to generalize the disentangling canonical transformation to two spin-
1/2 impurities if the system possesses two independent parity symmetries. The main
point is that we can then apply the disentangling transformation twice to change the
two conserved parity operators into the two spin-1/2 operators. To be concrete, we
consider the following Hamiltonian:

Ĥtwo = Ĥbath + Ĥdirect + Ĥimp−bath, (5.16)

where the bath Hamiltonian Ĥbath and the direct-spin interaction Ĥdirect are given by

Ĥbath =
∑

lmα

�̂
†
lαhlm�̂mα, Ĥdirect =

∑

γ

K γ ŝγ

imp,1ŝ
γ

imp,2, (5.17)

where K γ are couplings between the two impurity spins ŝγ

imp,i = σ̂
γ

imp,i/2 with

i = 1, 2 and γ = x, y, z. The Hamiltonian Ĥimp−bath represents a general interac-
tion between the two impurities and the environment:
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Ĥimp−bath =
∑

i

ŝimp,i · �̂i , (5.18)

where we introduce the bath-spin density operator including the impurity-bath cou-
plings gγ

lm,i for each impurity spin i = 1, 2 as

�̂
γ

i = 1

2

∑

lmαβ

gγ

lm,i �̂
†
lασ

γ

αβ�̂mβ. (5.19)

To decouple the first impurity, we use the unitary transformation

Û two
1 = 1√

2

(
1 + i σ̂ y

imp,1σ̂
z
imp,2P̂z

)
, (5.20)

where we denote the parity operator acting on the bath as

P̂γ = e(iπ/2)(
∑

l σ̂
γ

l +N̂ ) (γ = x, y, z). (5.21)

We observe that the original Hamiltonian is invariant under the π rotation about the
z axis, leading to the parity conservation

[Ĥtwo, P̂1] = 0, P̂1 = σ̂ z
imp,1σ̂

z
imp,2P̂z . (5.22)

The unitary transformation Û two
1 can map this conserved parity (5.22) onto the first

impurity operator:

Û †two
1 P̂1Û

two
1 = σ̂ x

imp,1. (5.23)

Thus, the first impurity is disentangled after the first unitary transformation. We can

explicitly obtain the transformed Hamiltonian ˆ̃H1,two = Û †two
1 ĤtwoÛ two

1 as

ˆ̃H1,two = Ĥbath + K x ŝximp,1ŝ
x
imp,2 + P̂z

(
−K yŝximp,2 + K zŝximp,1

)

+ŝ ximp,1�̂
x
1 + ŝ zimp,2P̂z

(
− i�̂ y

1

2
+ ŝ ximp,1�̂

z
1

)
+ ŝimp,2 · �̂2, (5.24)

which commutes with σ̂ x
imp,1 as expected from the construction. To decouple the

second impurity, we use the following second unitary transformation:

Û two
2 = 1√

2

(
1 + i σ̂ y

imp,2P̂x

)
. (5.25)
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We observe that the Hamiltonian ˆ̃H1,two in Eq. (5.24) is still invariant under the π

rotation about the x axis, and this leads to another parity conservation

[ ˆ̃H1,two, P̂2] = 0, P̂2 = σ̂ x
imp,2P̂x . (5.26)

We can use the second unitary transformation Û two
2 to map the second conserved

parity P̂2 onto the second impurity operator as

Û †two
2 P̂2Û

two
2 = −σ̂ z

imp,2. (5.27)

We note that Û two
2 commutes with the first impurity operator and thus σ̂ x

imp,1 remains

to be a conserved quantity. The final Hamiltonian ˆ̃H2,two = Û †two
2

ˆ̃H1,twoÛ two
2 after

the decoupling of the two impurities is

ˆ̃H2,two = Ĥbath − K x
P̂x ŝ

x
imp,1ŝ

z
imp,2 + (−i)N K y

P̂y ŝ
z
imp,2 + K z

P̂z ŝ
x
imp,1

+ŝ ximp,1�̂
x
1 + ŝ zimp,2�̂

z
2 + ŝ zimp,2P̂z

(
− i�̂ y

1

2
+ ŝ ximp,1�̂

z
1

)

+ P̂x

(
− i�̂ y

2

2
− ŝ zimp,2�̂

x
2

)
, (5.28)

which commutes with the two impurities ŝ ximp,1 and ŝ zimp,2. Here, we use the relation

P̂zP̂x = (−i)N P̂y . To see the entanglement structure encoded by the decoupling
transformation, let us specify the sector σ̂ x

imp,1 = +1 and σ̂ z
imp,2 = +1 for the sake of

concreteness. The variational state is then represented by

|�〉 = Û two
2 Û two

1 |+x 〉1| ↑〉2|�bath〉
= Û two

2

[
| ↑〉1| ↑〉2 (1 + Pz)

2
|�bath〉 + | ↓〉1| ↑〉2 (1 − Pz)

2
|�bath〉

]

= 1

2
|+x 〉1| ↑〉2|�bath〉+ 1

2
|−x 〉1| ↑〉2P̂z|�bath〉− 1

2
|+x 〉1| ↓〉2P̂x |�bath〉

− (−i)N

2
|−x 〉1| ↓〉2P̂y|�bath〉. (5.29)

We remark that this canonical transformation has already found applications in ana-
lyzing the string-breaking dynamics of quark-antiquark pairs in the prototypical
lattice gauge theory [114].
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5.2.3 Disentangling the Single-Impurity Anderson Model

We can also generalize the transformation to the single-impurity Anderson model
(Ads) such that the impurity degrees of freedom can be partially disentangled from
the environment. We start from the Hamiltonian

ĤAds =
∑

lm

hlm�̂
†
lσ �̂mσ + V

(
�̂

†
0σ �̂dσ + H.c.

)
+ εd

∑

σ

�̂
†
dσ �̂dσ +U�̂

†
d↑�̂

†
d↓�̂d↓�̂d↑,

(5.30)

where �̂dσ (�̂†
dσ ) annihilates (creates) a fermion at the impurity orbital with spin σ ,

V is the hybridization term, εd is an energy of the impurity orbital, and U denotes
the on-site Coulomb interaction. We represent the impurity in the following four-
dimensional basis:

{|0〉d , | ↑〉d , | ↓〉d , | ↑↓〉d}, (5.31)

and use the spin representation of �̂dσ in this basis as

�̂d↑ = eiπ N̂ I2 ⊗ σ+, �̂d↓ = eiπ N̂σ+ ⊗ σ z, (5.32)

where we introduce eiπ N̂ with N̂ = �lσ �̂lσ �̂lσ to maintain the anticommutation
relation {�̂dσ , �̂lσ ′ } = 0. We observe that the Hamiltonian (5.30) has the parity
symmetry

[ĤAds, P̂Ads] = 0, P̂Ads = ŜzP̂z, (5.33)

where P̂z = e(iπ/2)(
∑

l σ̂
z
l +N̂ ) = eiπ

∑
l �̂

†
l↑�̂l↑ and we define an operator Ŝz = −I2 ⊗ σ z

acting on the impurity. This symmetry corresponds to the invariance of ĤAds under
the following transformation:

(�̂0↑, �̂d↑) → (−�̂0↑,−�̂d↑), (�̂0↓, �̂d↓) → (�̂0↓, �̂d↓). (5.34)

In the similar manner as in the transformation (5.13) for the localized single-impurity
case, we introduce the unitary operator

ÛAds = 1√
2
(1 + i Ŝ y

P̂z), (5.35)

where we define Ŝ y = −σ x ⊗ σ y . This transformation can map the conserved parity
P̂Ads onto the impurity operator as follows:

Û †
AdsP̂AdsÛAds = i Ŝz Ŝ y = X̂ , (5.36)
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where we introduce the impurity operator X̂ = σ x ⊗ σ x . The explicit form of the

transformed Hamiltonian ˆ̃HAds = Û †
Ads ĤÛAds can be given by

ˆ̃HAds = Ĥbath + Veiπ N̂

2

(
�̂

†
0↑I2 ⊗ σ x + i�̂†

0↓σ y ⊗ σ z − P̂z�̂
†
0↑σ x ⊗ I2

−P̂z�̂
†
0↓I2 ⊗ σ x + H.c.

)

+εd + U

4
+ U

4
Ẑ + 1

4
(2εd +U )(X̂ − Ŷ )P̂z, (5.37)

where we define Ŷ = σ y ⊗ σ y and Ẑ = σ z ⊗ σ z . The conservation of the parity
[ĤAds, P̂Ads] = 0 in the transformed frame now turns out to be the partial decou-

pling of the impurity [ ˆ̃HAds, X̂ ] = 0. Since X̂ has two degenerate eigenvalues ±1,

the transformed Hamiltonian ˆ̃HAds has two sectors ˆ̃HP corresponding to the impu-
rity subspace {|Pc〉, |Ps〉} spanned by two eigenstates of X̂ having the eigenvalues
P = ±1:

|±c〉 = 1√
2
(|0〉d ± | ↑↓〉d), |±s〉 = 1√

2
(| ↑〉d ± | ↓〉d). (5.38)

The states |±c〉 (|±s〉) represent the charge (spin) sector of the impurity. Introducing
the fermionic operator

f̂ P = eiπ N̂ |Ps〉〈Pc|, (5.39)

we can simplify the transformed Hamiltonian as follows:

ˆ̃HP = Ĥbath + V

2

[
�̂

†
0↑( f̂ †P + f̂ P) − P�̂

†
0↓( f̂ P − f̂ †P) − PP̂z�̂

†
0↑( f̂ †P + f̂ P)

−P̂z�̂
†
0↓( f̂ †P + f̂ P) + H.c.

]

+εd + U

2
f̂ †P f̂P +

(
εd + U

2

)
PP̂z f̂

†
P f̂P . (5.40)

The Hamiltonian ˆ̃HP shows that in a large U � V limit the small charge excitation
can be adiabatically eliminated, resulting in the low-energy physics described by the
spin fluctuation as realized in the Kondo model.
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5.3 Efficient Variational Approach to Generic
Spin-Impurity Systems

Here and henceforth, we focus on a class of single spin-impurity models (SIM) intro-
duced in Sect. 5.2.1. To solve generic SIM efficiently, we need versatile variational
states capturing essential physics behind impurity problems while they have to be
simple enough such that calculations are still tractable. In this section, we achieve this
aim by combining the disentangling transformation Û with the fermionic Gaussian
states [115–117] in which the number of parameters grows only quadratically with
the system size. While the Gaussian states cannot represent nonfactorizable corre-
lations, the transformation Û can generate the entanglement between the impurity
and the environment, making the variational states sufficiently flexible to capture
essential physics of SIM.

5.3.1 Fermionic Gaussian States

The fermionic Gaussian states are defined by density operators represented by
exponentials of a quadratic form of fermionic operators. For the sake of simplic-
ity, we focus on the pure fermionic Gaussian states and use them to approximate the
environmental wavefunction in the transformed frame, where the impurity dynamics
is decoupled from the bath. It is convenient to introduce the Majorana operators

ψ̂1,lα = �̂
†
lα + �̂lα,

ψ̂2,lα = i(�̂†
lα − �̂lα), (5.41)

which satisfy the anticommutation relation

{ψ̂ξ,lα, ψ̂η,mβ} = 2δξηδlmδαβ, (ξ, η = 1, 2). (5.42)

One can fully characterize a pure fermionic Gaussian state |�G〉 by a 4N f ×4N f

real-antisymmetric matrix �, which gives the covariance matrix [115–117]:

� = i

2

〈
[ψ̂, ψ̂

T]
〉

G
, (5.43)

where 〈· · · 〉G is an expectation value with respect to |�G〉. A Gaussian state is pure if
and only if its covariance matrix satisfies �2 = −I4N f , where Id is the d × d identity

matrix. We denote a vector of the Majorana operators by ψ̂ = (ψ̂1, ψ̂2)
T, in which

a row vector ψ̂ ξ with ξ = 1, 2 is ordered as

ψ̂ ξ = (ψ̂ξ,1↑, . . . , ψ̂ξ,N f ↑, ψ̂ξ,1↓, . . . , ψ̂ξ,N f ↓). (5.44)
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The pure Gaussian state can be expressed as

|�G〉 = e
1
4 ψ̂

T
Xψ̂ |0〉 ≡ ÛG|0〉, (5.45)

where X is a 4N f ×4N f real-antisymmetric matrix that is related to � as

� = −� σ (�)T , (5.46)

in which we denote � = eX and σ = iσ y ⊗ I2N f . It will be also useful to define the
2N f ×2N f correlation matrix:

� f = 〈�̂†
�̂〉G (5.47)

in terms of Dirac fermions

�̂ = (�̂1↑, . . . , �̂N f ↑, �̂1↓, . . . , �̂N f ↓). (5.48)

Since the Gaussian states are factorizable, usingWick’s theorem, all the higher-order
correlations of fermionic operators can be obtained from the covariance matrix �.

5.3.2 Variational Time Evolution of the Covariance Matrix

Since the impurity dynamics is decoupled from the bath in the transformed frame,
only the environmental degrees of freedom,which are denoted as |�bath〉 inEq. (5.15),
evolve in time. Its exact evolution can be approximated by projecting it onto theman-
ifold spanned by the family of variational states, which are chosen to be the fermionic
Gaussian states here. The variational time-evolution equations can be derived based
on the time-dependent variational principle [117–120]. Integrating the variational
imaginary- and real-time evolutions, one can analyze ground-state properties and
nonequilibrium dynamics of a general SIM, respectively.

We first derive a variational equation for the imaginary-time evolution. Its exact
form is defined by

|�bath(τ )〉 = e− ˆ̃Hτ |�bath(0)〉∥∥∥e− ˆ̃Hτ |�bath(0)〉
∥∥∥
. (5.49)

If the overlap between the initial state |�bath(0)〉 and the ground state is nonzero,
this evolution will provide the ground state in τ → ∞. A differential form of the
equation of motion is given by

d

dτ
|�bath(τ )〉 = −(

ˆ̃H − E)|�bath(τ )〉, (5.50)
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where we denote E = 〈�bath(τ )| ˆ̃H |�bath(τ )〉. In our consideration, we approxi-
mate |�bath〉 by the Gaussian state |�G〉 whose covariance matrix � corresponds to
the time-dependent variational parameter. Its imaginary-time evolution equation is
given by minimizing the deviation ε from the exact imaginary-time evolution in the
variational manifold:

ε =
∥∥∥∥
d

dτ
|�G(τ )〉 + (

ˆ̃H − Evar)|�G(τ )〉
∥∥∥∥
2

, (5.51)

where Evar = 〈�G(τ )| ˆ̃H |�G(τ )〉. The minimization condition can formally be writ-
ten as the following differential equation:

d

dτ
|�G(τ )〉 = −P̂∂�(

ˆ̃H − Evar)|�G(τ )〉, (5.52)

where P̂∂� projects quantum states onto the subspace spanned by tangent vectors of
the variational manifold. The left-hand side of Eq. (5.52) leads to

d

dτ
|�G(τ )〉=ÛG

(
1

4
: ψ̂

T
�T d�

dτ
ψ̂ :+ i

4
Tr

[
�T d�

dτ
�

])
|0〉, (5.53)

where : : denotes the normal order. The right-hand side of Eq. (5.52) is given by

−(
ˆ̃H − Evar)|�G(τ )〉 = −ÛG

(
i

4
: ψ̂

T
�TH�ψ̂ : +δÔ

)
|0〉, (5.54)

where δÔ represents the higher-order terms of ψ̂ which are projected out by P̂∂� in
Eq. (5.52), and

H = 4
δEvar

δ�
(5.55)

is the functional derivative of the variational energy. From Eqs. (5.46), (5.53) and
(5.54), the variational imaginary time-evolution equation is obtained as

d�

dτ
= −H − �H�. (5.56)

The variational energy Evar monotonically decreases in this imaginary-time evolution
and the variational ground state will be obtained in the limit of τ → ∞. In this limit,
the deviation ε in Eq. (5.51) is equivalent to the energy variance, which can be used
to assess the accuracy of the reached variational ground state.
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Following the sameprocedure, the variational equation for the real-time evolution

|�bath(t)〉 = e−i ˆ̃Ht |�bath(0)〉 (5.57)

can also be obtained. The projection

d

dt
|�G(t)〉 = −i P̂∂�

ˆ̃H |�G(t)〉 (5.58)

results in the following variational real-time evolution equation:

d�

dt
= H� − �H . (5.59)

5.3.3 General Expression of the Functional Derivative

To integrate the equations ofmotions inEqs. (5.56) and (5.59), it is necessary to derive
the analytical expressionof the functional derivativeH = 4δEvar/δ�. Thevariational

energy Evar = 〈 ˆ̃H〉G in the transformed frame can be obtained from Eq. (5.14) as

Evar =
∑

lmα

hlm(� f )lα,mα − hz

2
σ x
imp〈P̂bath〉G + 1

4

∑

lmαβ

gxlmσ x
impσ

x
αβ(� f )lα,mβ

+ 1

4

∑

lmαβ

(
−igy

lmσ y+ gzlmσ x
impσ

z
)

αβ
(�P

f )lα,mβ, (5.60)

where the impurity spin is conditioned on a classical number σ x
imp = ±1 and we

introduce the 2N f × 2N f correlation matrix containing the parity operator as

�P
f = 〈P̂bath�̂

†
�̂〉G. (5.61)

We can calculate 〈P̂bath〉G and �P
f as

〈P̂bath〉G = (−1)N f Pf

[
�F

2

]
, (5.62)

�P
f = 1

4
〈P̂bath〉G�z(I2N f ,−iI2N f )ϒ

−1
(
�σ − I4N f

)( I2N f

iI2N f

)
, (5.63)

where Pf denotes the Pfaffian of a real antisymmetric matrix and we introduce the
matrices
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�F =
√
I4N f + ��

√
I4N f + � − (I4N f − �)σ, (5.64)

ϒ = I4N f + 1

2

(
�σ − I4N f

) (
I4N f + �

)
, (5.65)

which are defined by � = I2 ⊗ �z and �z = σ z ⊗ IN f . We remark that σ is intro-
duced belowEq. (5.46).We can represent the quadratic part of theHamiltonian (5.14)

in the Majorana basis as iψ̂
TH0ψ̂/4 with

H0 = iσ y ⊗ [I2 ⊗ hlm + (σ x
imp/4) σ x ⊗ gxlm], (5.66)

where hlm and gxlm are understood to be N f ×N f real matrices. Let us also introduce
the matrix

G = −iσ y ⊗ gy
lm + σ x

impσ
z ⊗ gzlm . (5.67)

We can then simplify the expression of the mean energy (5.60) as

Evar = 1

4
Tr
(HT

0�
)− hz

2
σ x
imp〈P̂bath〉G + 1

4
Tr
(GT�P

f

)
. (5.68)

Its functional derivative H = 4δEvar/δ� is given by

H=H0 + δ

δ�

[
−2hzσ

x
imp〈P̂bath〉G + Tr(GT�P

f )
]
. (5.69)

Doing some calculations to take the derivatives of 〈P̂bath〉G and �P
f with respect to �

(c.f. Ref. [121]), we can rewrite Eq. (5.69) to get the analytical form of H :

H = H0+
[
hzσ

x
imp〈P̂bath〉G− 1

2
Tr(GT�P

f )

]
P − i

4
〈P̂bath〉G A [VGT�zV†] , (5.70)

whereA[M]=(M−MT)/2 indicates the matrix antisymmetrization and we denote

P =
√
I4N f + ��−1

F

√
I4N f + �, (5.71)

V = (ϒT)−1

(
I2N f

iI2N f

)
. (5.72)

Integrating the variational Eqs. (5.56) and (5.59) by using a general expression (5.70)
of the functional derivative H , one can study ground-state properties and nonequi-
librium dynamics of SIM on demand.
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5.4 Application to the Anisotropic Kondo Model

In this section, the variational approach is applied to the anisotropic Kondo model.
We benchmark our approach with the MPS [84], the Bethe-ansatz solution [31–33,
122–124] and the analytically known nonperturbative scalings.

5.4.1 Kondo Problem

Among many spin-impurity systems, the Kondo model is one of the most important
and well-understood problems. It describes physics of a localized spin impurity
coupled to a fermionic environment:

ĤK =−th

L∑

l=−L

(
ĉ†lα ĉl+1α+h.c.

)
+ 1

4

∑

γ

Jγ σ̂
γ

impĉ
†
0ασ

γ

αβ ĉ0β, (5.73)

where ĉ†lα and ĉlα are fermionic creation and annhiliation operators with spin α and
position l.3 The localized spin-1/2 impurity σ̂

γ

imp interacts with fermions at site l = 0
via the anisotropic couplings Jx,y = J⊥ and Jz = J‖. Here and henceforth, we choose
the unit th = 1 and tacitly assume that repeated indices over α, β are to be summed.

The ground-state physics of the anisotropic Kondo problem (5.73) can be under-
stood from the perturbative renormalization group (RG) analysis, which is valid for
small couplings J⊥ and J‖. The leading terms of the RG equations for the dimen-
sionless couplings j‖,⊥ = ρF J‖,⊥ normalized by the density of states at the Fermi
energy ρF = 1/(2π th) are [23]

d j‖
dl

= j2⊥, (5.74)

d j⊥
dl

= j‖ j⊥. (5.75)

The corresponding RG flows are plotted in Fig. 5.2. We note that the RG phase
diagram is equivalent to that of the (conventional) sine-Gordon model with the cor-
respondence j‖ ↔ 2 − K and j⊥ ↔ 2gr. The model exhibits a quantum phase tran-
sition [1] between the antiferromagnetic (AFM) phase and the ferromagnetic (FM)
phase. In the AFM phase, the ground state forms the singlet state between the
impurity spin and bath fermions (known as the Kondo singlet state), resulting in zero
magnetization 〈σ̂ z

imp〉 = 0. The FM phase exhibits the triplet formation leading to a
nonzero impurity magnetization. In this phase, the parameter j⊥ flows to zero in the

3Generalizations to higher dimensions can be straightforwardly done by modifying the hopping
matrix.
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Fig. 5.2 Renormalization group flows in the anisotropic Kondomodel. The impurity spin forms the
triplet state in the ferromagnetic (FM) regime with j‖ < 0 and | j‖| > | j⊥|, where j⊥ scales to zero
and thus the impurity is decoupled in the low-energy limit. In the other regime, the spin forms the
singlet state and develops the antiferromagnetic (AFM) correlation with the couplings flowing to
large values. The structure of RG flows is equivalent to that of the Berezinskii-Kosterlitz-Thouless
transition

low-energy limit and thus the impurity dynamics is eventually decoupled from the
environment.

Let us apply our general variational approach to the anisotropic Kondomodel. We
note that, in Eq. (5.73), the impurity is coupled to only the symmetric bathmodes.We
can thus choose a basis of the fermionic modes �̂ used in the variational calculation
as

�̂0α = ĉ0α, �̂lα = 1√
2

(
ĉlα + ĉ−lα

)
, l = 1, 2, . . . , L . (5.76)

The hopping matrix hlm is then given by the following (L+1)×(L+1) matrix:

h1 = (−th)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
√
2 0 · · · 0

√
2 0 1 0

...

0 1 0 1
...

... 0 1
. . . 1

0 · · · · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (5.77)

The couplings gγ

lm correspond to the local Kondo interaction Jγ δl0δm0.
Substituting the above expressions into Eq. (5.70), one can obtain the functional

derivative used to integrate the imaginary-time evolution (5.56) and the real-time
evolution (5.59). From the resulting time-dependent covariance matrix �, one can
study the ground state and the real-time dynamics of the anisotropic Kondo model.
We remark that physical quantities can be efficiently obtained from �. For instance,
the impurity-environment spin correlations can be given as
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χ x
l = 1

4
〈σ̂ x

impσ̂
x
l 〉 = 1

4
σ x
impσ

x
αβ(� f )lα,lβ, (5.78)

χ
y
l = 1

4
〈σ̂ y

impσ̂
y
l 〉 = 1

4
(−iσ y

αβ)(�P
f )lα,lβ, (5.79)

χ z
l = 1

4
〈σ̂ z

impσ̂
z
l 〉 = 1

4
σ x
impσ

z
αβ(�P

f )lα,lβ. (5.80)

We note that 〈· · · 〉 represents an expectation value in the original frame. Using
Eq. (5.62), the magnetization is given by

〈σ̂ z
imp〉 = σ x

imp〈P̂bath〉G = σ x
imp(−1)N f Pf

[
�F

2

]
. (5.81)

5.4.2 Entanglement Structure of the Variational Ground
State

Before comparing our variational approachwith other theoreticalmethods, it is useful
to clarify the fact that our variational ground state can naturally encode the entangle-
ment structure in theKondo-singlet state. To see this,we consider a sector correspond-
ing to zero total spin-z component σ̂ z

tot = σ̂ z
imp + σ̂ z

bath = 0 with σ̂ z
bath =∑L

l=0 σ̂ z
l .

From Eqs. (5.11) and (5.15) with σ x
imp = 1, the many-body state in the original

frame contains the spin-up impurity |↑〉 coupled to a bath wavefunction with an even
number of spin-up fermions N↑ while the spin-down impurity |↓〉 is coupled to that
with odd N↑. Thus, the projected states |�±〉 = P̂±|�bath〉 appearing in Eq. (5.15)
are eigenstates of σ̂ z

bath:

σ̂ z
bath|�±〉 = ∓|�±〉. (5.82)

In the deep AFM phase, we numerically check that the projected states |�±〉 satisfy

|||�±〉|| = 1/2, 〈�−| σ̂+
bath |�+〉 = −1/2. (5.83)

These relations together with Eq. (5.15) automatically ensure the fact that the varia-
tional ground state is the singlet state:

|�AFM〉 = 1√
2

(|↑〉imp|�↓〉 − |↓〉imp|�↑〉) , (5.84)

where we introduce |�↓〉 = √
2|�+〉 and |�↑〉 = −√

2|�−〉.
We note that, if we specify |�bath〉 in Eq. (5.15) to be a single-particle excitation

on top of the Fermi sea, Eq. (5.84) reproduces the Yosida ansatz [125–127] (see
Eq. (5.88) below). Recently, Ref. [128] has revisited the Yosida ansatz and pointed
out that it can contain the most part of the entanglement in the Kondo singlet state,
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indicating the ability of our variational states to efficiently capture the impurity-
environment entanglement. That said, it should be emphasized that our variational
states take into account all the possible two-particle excitations and thus go beyond
the Yosida ansatz. This flexibility becomes particularly important when we aim to
analyze in- and out-of-equilibrium properties of SIM in a quantitative manner.

Another criterion to verify the Kondo-singlet formation is to test the sum rule [26]
of the spin correlations χl = 〈σ̂ imp · σ̂ l〉/4:

L∑

l=0

χl = 1

8
〈σ̂ 2

tot − σ̂
2
imp − σ̂

2
bath〉 = −3

4
. (5.85)

In the numerical results presented below, the sum rule is satisfied with an error below
0.5% in the AFM regime with J‖ > 0.

5.4.3 Benchmark Tests with the Matrix-Product States

Matrix-product states (MPS)

We use the MPS to benchmark our variational approach. Let us briefly review the
idea of the MPS. The MPS is the ansatz for quantum many-body states that can be
written as

|�D〉=
∑

{ik }
Tr
(
A[0]i0A[1]i1 · · ·A[N − 1]iN−1

)|i0i1 · · · iN−1〉, (5.86)

where {|ik〉} is a basis of the Hilbert space at site k and A[k]ik represents a D × D
matrix labelled by ik , where D is the bond dimension. The MPS is applicable to
analyzing one-dimensional quantum many-body states with a small entanglement
such as low-temperature equilibrium states or time-evolving states in short-time
regimes [81, 84, 129–133].

In practice, to find the best MPS approximation to the ground state of the
anisotropic Kondo model (5.73), we represent the Hamiltonian by a matrix-product
operator (MPO) [134] and employ the variational minimization of the energy

|�MPS〉 = argmin
〈�D|Ĥ |�D〉
〈�D|�D〉 . (5.87)

The minimization can be done by performing the alternating least squares method
until the ground-state energy is converged to a desired precision (see Refs. [81, 84]
for details). To make comparisons with our variational results, we use a convergence
precision 10−8–10−6 in units of th = 1.
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Fig. 5.3 Spin correlations χ z
l = 〈σ̂ z

impσ̂
z
l 〉/4 at zero temperature obtained from our non-Gaussian

variational state (NGS, blue circles), the matrix-product state (MPS, red crosses), and the Yosida
ansatz (green triangulars). The insets plot the deviations between the results obtained from two
methods. As shown in the inset of (a), we set ( j‖, j⊥) to be (a) (−0.1, 0.4), (b) (0.1, 0.4), (c, e)
(−0.4, 0.1) and (d, f) (0.4, 0.1). We set L = 100 and use the bond dimension D = 260 for MPS.
Reproduced from Fig. 2 of Ref. [85]. Copyright © 2018 by the American Physical Society

The MPS can also be used for analyzing dynamics by approximating the time-
evolution operator by the Suzuki–Trotter decomposition [135, 136] to express it as
a product of MPO [132, 134, 137]. The calculation is again done by the alternating
least squares method and minimizing the distance between the MPS and the time-
evolved state at each time step (see Refs. [81, 84] for details). In general, a real-time
evolution will lead to an increase of the entanglement in the quantum state especially
in a long-time regime. To maintain the numerical accuracy, we check convergence
of the results against an increasing bond dimension at different times.

Yosida ansatz

To illustrate the importance of contributions beyond single-particle excitations, we
also make comparisons with the Yosida ansatz [125], which is defined as follows:

|�Yosida〉 =
{

1√
2

∑
n>nF

dn
(
|↑〉impĉ

†
n↓ − |↓〉impĉ

†
n↑
)

|FS〉 (−J‖ ≤ J⊥);
∑

n>nF
dn|↑〉impĉ

†
n↑|FS〉 (−J‖ > J⊥),

(5.88)

where |FS〉 is the half-filled Fermi sea, n labels a bath energy mode and n > nF
represents a mode above the Fermi surface. The first (second) line in Eq. (5.88) rep-
resents the AFM-singlet (FM-triplet) state. We minimize the mean energy 〈Ĥ〉Yosida
by optimizing the amplitudes {dn}, leading to
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εndn − 1

4
Jeffψ

∗
0n

∑

m>nF

ψ0mdm = EGSdn, (5.89)

where ψln’s are expansion coefficients of a fermion at site l in the energy basis, i.e.,
ĉl =∑n ψln ĉn , εn is a bath energy, and EGS is the variational ground-state energy.
The effective Kondo coupling Jeff is defined by

Jeff =
{
2J⊥ + J‖ (−J‖ ≤ J⊥),

−J‖ (−J‖ > J⊥).
(5.90)

The variational ground-state energy EGS and the amplitudes {dn} can be obtained
from solving the eigenvalue problem (5.89). It is useful to explicitly see how the
Yosida ansatz relates to our variational states. Using the disentangling transformation
Û in Eq. (5.13), the singlet state in the AFM regime can be expressed as

Û−1|�Yosida〉 = |+x 〉
∑

n>nF

dn√
2

(
ĉ†n↓ − ĉ†n↑

)
|FS〉. (5.91)

The bath state in this transformed frame is just a single-particle excitation on top
of the Fermi sea, which belongs to the fermionic Gaussian states. Thus, the Yosida
ansatz is a very special subclass of our variational states.

Benchmark tests in equilibrium regimes

Figure5.3 shows the benchmarking results for the ground-state impurity-bath spin
correlations χ z

l = 〈σ̂ z
impσ̂

z
l 〉/4. Our variational results quantitatively agree with the

MPS results; the observed deviation is at most a few percent of the maximum value
at the impurity site. In the deep FM and AFM regimes, we find a particularly good
agreement (see Fig. 5.3c, d), in which the deviation is below 1%.

Figure (5.4a, b) plot the ground-state energy Evar and the magnetization 〈σ̂ z
imp〉.

Our results show quantitative agreement with theMPS results with a deviation below
0.5% in the FM regime, and even achieve lower energies in j‖ � −0.7 (see the left
inset of Fig. 5.4a). The largest deviation in the ground-state energy (see the right
inset of Fig. 5.4a) and the magnetization (see Fig. 5.4b) can be found near the phase
boundary. We attribute the observed deviations to a large amount of entanglement
that has to be encoded in the many-body wavefunction in this regime. Due to the
nonmonotonic RG flows, the Kondo couplings can be very small in their midflows,
indicating the formation of a large Kondo cloud. Since the analysis has been done in
real space, our variational states should encode a large amount of the entanglement,
whichmaygo above the amount that canbegenerated by the canonical transformation
Û . In the AFMphase, the ground-state energies calculated from our variational states
and the MPS quantitatively agree with a great accuracy; the deviation is typically
below 0.5% in j‖ > 0. The residual magnetization in the AFM phase is O(10−5) in
our variational method and 〈σ̂ z

imp〉 � O(10−4) in the MPS.
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Fig. 5.4 a The ground-state energy and b the magnetization obtained from our variational state
(NGS, blue circles), the matrix-product state (MPS, red crosses), and the Yosida ansatz (green,
dashed curves). As schematically illustrated in the inset of (b), we use j⊥ = 0.5 and alter j‖ from
−1 to 1. We set L = 200 and use the bond dimension D = 280 for MPS. Reproduced from Fig. 3
of Ref. [85]. Copyright © 2018 by the American Physical Society
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We remark the great efficiency of our variational approach. In theMPS, the number
of variational parameters is roughly equal to 4LD2 with D and L being the bond
dimension and the system size, respectively. Meanwhile, our variational ansatz uses
4L2 variational parameters. As the bond dimension D is taken to be about 200-300
and the system size L is typically 100-200, our variational states have achieved
the accuracy comparable to the MPS with two or three orders of magnitude fewer
variational parameters (and shorter CPU time accordingly) than the corresponding
MPS ansatz.

Benchmark tests in out-of-equilibrium regimes

We next show the comparisons for the dynamics of the magnetization. We choose
the initial state to be

|�(0)〉 = |↑〉imp|FS〉. (5.92)

We then suddenly switch on the impurity-environment coupling at time t = 0.
Figure5.5a shows the comparison of the magnetization dynamics at the isotropic
points j‖ = j⊥ = ±0.35. In the AFM phase, the Kondo-singlet formation leads to
the relaxation of the magnetization to zero. In the FM phase, the oscillation is caused
by a particle excitation from the bottom to the top of the band, in which the band-
widthD = 4th determines its period 2π�/D. The long-time persistence of the oscil-
lation can be understood from the decoupling of the impurity spin in the low-energy
limit. Our variational results agree with the MPS results with a deviation below

(a) (b)

Fig. 5.5 Time evolutions of the magnetization calculated from our variational state (NGS, blue
solid curves) and the matrix-product state (MPS, red dashed curves). We set j‖ = j⊥ = 0.35 for the
ferromagnetic (FM) case and j‖ = j⊥ = 0.35 for the antiferromagnetic case (AFM) in (a). In (b),
we use ( j‖, j⊥) = (0.1, 0.4) for the FM case and (−0.4, 0.1) for the AFM case. We set L = 100
and vary the bond dimension D ∈ [220, 260] of the MPS for which the results converge within the
time scale in the plots. Reproduced from Fig. 4 of Ref. [85]. Copyright © 2018 by the American
Physical Society
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O(10−2). Figure5.5b shows the magnetization dynamics in the anisotropic AFM
and FM points. Our variational results agree well with the MPS results in the short
and intermediate time regimes. A small discrepancy can be found in the long-time
regime (t � 10). Its typical order is O(1 × 10−2) (O(6 × 10−2)) in the FM (AFM)
phase. Yet, the results obtained from these two methods still exhibit qualitatively the
same features in both phases.

5.4.4 Benchmark Test with the Bethe Ansatz Solution

We next compare our variational approach to the exact solution obtained from the
Bethe ansatz (BA) [31–33, 122–124]. While the BA solution is valid only under the
infinite-bandwidth assumption, our approach should still reproduce the BA results if
the relevant energy scale is much less than the bandwidthD = 4th. The BA solution
for the zero-temperature magnetization m = 〈σ̂ z

imp〉/2 can be given as [124]:

mBA =

⎧
⎪⎪⎨

⎪⎪⎩

1
4
√

π3

∑∞
k=0

(−1)k

k!
(

π
2

)2k+1
(
k+1/2
2π

)k− 1
2
(

hz
TK

)2k+1
(hz/TK ≤ √

8/(πe));
1
2

{
1− 1

π3/2

∫∞
0 dt sin(π t)t

[
8
πe

(
TK
hz

)2]
e−t (ln t−1)�

(
t + 1

2

)}
(hz/TK >

√
8/(πe)),

(5.93)

where �(·) is the Gamma function and the magnetic susceptibility χ ≡ ∂m/∂hz =
1/(4TK) at hz = 0 determines the Kondo temperature TK. In Fig. 5.6, we compare
the BA solution mBA (dashed black line) to our variational results. The deviation is
at most a few percent in the regime hz/TK � 1, while it becomes more significant
as we increase hz/TK due to the finite bandwidth of the lattice model. At a larger
Kondo coupling j , the effect of the finite bandwidth begins to take place at a smaller
threshold value of hz/TK because of a larger TK.

Fig. 5.6 The ground-state
magnetization m = 〈σ̂ z

imp〉/2
obtained from our approach
and the Bethe ansatz (dashed
black line). We use TK that is
determined from the
magnetic susceptibility
χ = 1/(4TK). Reproduced
from Fig. 5 of Ref. [85].
Copyright © 2018 by the
American Physical Society
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5.4.5 Tests of Nonperturbative Scaling and Universal
Behavior

Equilibrium properties

We here test the universal behavior of the Kondo screening length ξK in the varia-
tional ground state. In practice, we obtain ξK as a size of the Kondo screening cloud
[71, 139] as follows. First, we calculate the integrated antiferromagnetic correla-
tions �AF(l) =∑l

|m|=0,2,4... χm with χm = 〈σ̂ imp · σ̂m〉/4 (see the inset of Fig. 5.7a).
Second, we determine ξK from f = 1 − �AF(ξK( f ))/�AF(L) with f > 0 being a

(a) (b)

(c) (d)

Fig. 5.7 a Screening length ξK at different thresholds f . The dashed lines show the scalings
ξK ∝ e1/j . (inset) We determine ξK as a length in which a fraction 1 − f of total correlations exists.
b The universal scaling of spin correlations. c, d Scalings of relaxation times τ in (c) the spin
correlations and (d) the impurity magnetization. (insets) We determine the relaxation times via
fitting the tales of �AF(L)(t) and 〈σ̂ z

imp(t)〉 with a + be−t/c. The dashed lines show the scalings
ln τ ∝ 1/j . We set L = 400. Reproduced from Figs. 2 and 3 of Ref. [138]. Copyright © 2018 by
the American Physical Society
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small threshold value. InFig. 5.7a, the extractedKondo length ξK( f ) is plotted against
1/j , where its correct nonperturbative scaling ξK ∝ T−1

K ∝ e1/j has been confirmed
[5]. Figure5.7b confirms the universal behavior of χl in units of ξK at different Kondo
couplings j , exhibiting the crossover from l−1 to l−2 decay at l/ξK ∼ 1 [140–142].
In particular, the correlations show the correct l−2 behavior even in a long-distance
regime.

Out-of-equilibrium properties

We next study the scalings of the relaxation times τcorr and τmag for the integrated cor-
relations �AF(L , t) and the impurity magnetization 〈σ̂ z

imp(t)〉. The relaxation times
are determined fromfitting the time evolutions of the corresponding observables with
exponential functions (see the caption of Fig. 5.7 and the insets of Fig. 5.7c, d). The
extracted relaxation times show the nonperturbative dependence on the Kondo cou-
pling j for both observables but with different scalings τcorr ∝ e1/j and τmag ∝ e2/j

(see themain panels of Fig. 5.7c, d).Ourfindings seem tobe consistentwith theTEBD
results [71], which predict the scalings τcorr ∝ e(1.5±0.2)/j and τmag ∝ e(1.9±0.2)/j .4

5.4.6 Spatiotemporal Dynamics after the Quench

Finally, we demonstrate that our approach allows one to study previously unexplored
nonequilibrium dynamics.We consider the sudden quench of the impurity-bath inter-
actions starting from the initial state (5.92). We plot the spatiotemporal dynamics of
the impurity-bath correlations χ z

l (t) in three different regimes of the phase diagram
(see the left most panel in Fig. 5.8). The quench generates AFM (FM) ballistic spin
waves in the FM (AFM) phase (see panels I and II) after which the equilibrium FM
(AFM) correlations are formed. Here, the AFM (FM) ballistic spin waves originate
from the excess spin associatedwith the formation of the triplet (singlet) correlations.

Most interestingly, the correlation shows the long-time crossover dynamics from
the triplet to singlet behavior in the AFM regime III close to the phase boundary (see
panel III and its closeup IV in Fig. 5.8). This peculiar dynamics can be understood
from the nonmonotonic RG flows in this regime (c.f. the left most panel in Fig. 5.8);
the high (low) energy physics associated with the FM (AFM) renormalized coupling
J‖ < 0 (J‖ > 0) characterizes the short (long) timedynamics, leading to the crossover
from the triplet-to-singlet behavior. In this respect, here one can interpret the real
time as an effective inverse RG scale [45]. The predicted spatiotemporal dynamics
can be tested with, e.g., quantum gas microscopy [143–147] (see also discussions in
Sect. 5.6).

We note that, by employing the infinite-bandwidth approximation, the Kondo
problem can be mapped to the spin-boson model [1] that is continuous in space
as a result of bosonization. With this mapping, the impurity relaxation and the

4We remark that a relatively large deviation in the scaling of τcorr has been attributed to the difficulty
of taking the adiabatic limit in the Anderson model analyzed in the TEBD study [71].
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Fig. 5.8 Spatiotemporal dynamics of spin correlationsχ z
l (t) after the quench in I FMphase, IIAFM

phase, III easy-plane FM regime. Panel IV is a closeup of panel III.We use L = 400 and set ( j‖, j⊥)

to be (−0.5, 0.2) in I, (0.5,0.2) in II, and (−1.85, 2) in III. Reproduced from Fig. 1 of Ref. [138].
Copyright © 2018 by the American Physical Society

spatiotemporal dynamics in a similar setup have been analyzed by the TD-NRG
method [65, 70]. However, a strictly linear dispersion and an artificial cut-off energy
are necessary in that method. In this respect, our approach is advantageous since it
allows one to make a direct quantitative comparison with experimental systems, as
it relies neither on the infinite-bandwidth limit nor on bosonization. This aspect
is particularly important especially in view of rapid experimental developments
to simulate nonequilibrium quantum dynamics using artificial quantum systems
[34–39, 148, 149].

5.5 Application to the Two-Lead Kondo Model

5.5.1 Model

We next apply our general variational approach to study the two-lead Kondo model
[46], in which the spin impurity interacts with fermions at the centers of the left and
right leads (see Fig. 5.9). The Hamiltonian is

Ĥtwo =∑lη

[
−th
(
ĉ†lηα ĉl+1ηα+h.c.

)+eVη ĉ
†
lηα ĉlηα

]

+ J
4

∑
ηη′ σ̂ imp · ĉ†0ηασ αβ ĉ0η′β − hz

2 σ̂ z
imp, (5.94)

where ĉ†lηα (ĉlηα) is a creation (annihilation) operator of a fermion with spin α and
position l on the left (η = L) or right (η = R) lead, J is the Kondo coupling strength,
the hopping th = 1 sets the energy unit, and eVη is a chemical potential acting on
each lead.
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Fig. 5.9 A schematic
illustration of the two-lead
Kondo model. Our
variational approach allows
one to calculate the
dynamics of the current I (t),
the magnetization 〈σ̂ z

imp(t)〉,
and the spatiotemporal
behavior of fermions in two
leads. Reproduced from
Fig. 6 of Ref. [85]. Copyright
© 2018 by the American
Physical Society

To apply our approach, we note that only the following symmetric bath modes
are coupled to the impurity:

�̂0η,α = ĉ0ηα, �̂lη,α = 1√
2

(
ĉlαη + ĉ−lηα

)
l = 1, 2, . . . , L . (5.95)

The bath Hamiltonian h2 in this basis can be taken as

h2 =
(
h1 + eVLIL+1 0

0 h1 + eVRIL+1

)
, (5.96)

where h1 is the hopping matrix for a single lead (see Eq. (5.77)). The impurity-bath
coupling matrix gγ

lm is

g = J

(
1 1
1 1

)
⊗ diagL+1(1, 0, ..., 0), (5.97)

where diagd(v) denotes a d × d diagonal matrix with elements v, and we consider
the isotropic interaction for the sake of simplicity. Substituting Eqs. (5.96) and (5.97)
into the functional derivative (5.70), we integrate the real-time evolution (5.59) to
analyze transport properties and out-of-equilibrium dynamics of the two-lead Kondo
model.

5.5.2 Spatiotemporal Dynamics of the Environment after
the Quench

We consider the quench protocol starting from the initial state

|�(0)〉 = | ↑〉imp|FS〉L|FS〉R, (5.98)
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Fig. 5.10 a Time evolutions of themagnetization 〈σ̂ z
imp(t)〉 (blue dashed curve) and the current I (t)

(black solid curve). b Spatiotemporal dynamics of the spin correlations χ z
l (t). c Spatiotemporal

dynamics of density changes relative to the initial values in each lead. We use L = 100 for each
lead, and set VL = −VR = 0.25 and j = 0.4. Reproduced from Fig. 7 of Ref. [85]. Copyright ©
2018 by the American Physical Society

where |FS〉L,R are the half-filled Fermi sea of each lead. We suddenly switch on the
Kondo coupling J and bias potentials VL = V/2 and VR = −V/2 at time t = 0. A
bias is taken to be V > 0 without loss of generality. We calculate the dynamics of
the current I (t) between two leads5:

I (t) = i
eJ

4�

[
〈σ̂ imp · ĉ†0Lασ αβ ĉ0Rβ〉 − h.c.

]

= −eJ

2�
Im

[
σ x
impσ

x
αβ(� f )0Lα,0Rβ + (−iσ y + σ x

impσ
z)αβ(�P

f )0Lα,0Rβ

]
. (5.99)

The result is shown in Fig. 5.10a as the black solid curve; the current relaxes to a
steady-state value after a short transient regime. This relaxation time is comparable
to the decay time of the magnetization and thus can be interpreted as the time scale
for the formation of the Kondo-singlet state (see the blue dashed curve in Fig. 5.10a).
The spatial dynamics of the spin correlation χ z

l (t) and the density change at each
lead are shown in Fig. 5.10b and c, respectively. After the ballistic density waves
reflect at the ends of leads, they propagate back to the impurity site. At the moment
they pass through the impurity site, the magnetization shows the recurrence while
the current flips its sign as shown in Fig. 5.10a. The density will reproduce the initial
homogeneous profile when the density waves again propagate back to the impurity
site after the second reflection.

The results presented here clearly demonstrate the ability of our variational
approach to accurately predict spatiotemporal dynamics in a long-time regime,which
has been difficult to achieve in the previous approaches. In a global quench proce-
dure considered here, a substantial energy (which linearly scales with the system
size) will be acquired, leading to a linear increase of the entanglement entropy in

5We note that 〈· · · 〉 represents an expectation value with respect to a quantum state in the original
frame and that � is placed back when the current and conductance are studied.
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time. This imposes the fundamental difficulty on, e.g., tDMRGmethod especially in
a long-time regime [61].

5.5.3 Transport Properties

Differential conductance

We next study transport properties by analyzing the differential conductance. For a
given bias V0, we calculate a steady-state value of the current Ī (V0) by taking the
time average over the plateau regime. The differential conductanceG is then obtained
from [58, 59, 61, 69]

G(V0) � Ī (V0 + �V ) − Ī (V0 − �V )

2�V
, (5.100)

where �V is a small modulation of the bias potential. To benchmark our results,
we first test the quadratic behavior G0(1 − cB(hz/TK)2) with cB = π2/16 at a low
magnetic field hz and the logarithmic behavior π2G0/(16 ln2(hz/TK)) at a high
magnetic field [19, 150–157]. As shown in Fig. 5.11a and in its inset, our results
reproduce the correct quadratic behavior at a low field with great accuracy. They
are also consistent with the logarithmic scaling at a high field. Figure5.11b plots the
differential conductanceG against the Kondo coupling j . Its nonmonotonic behavior
with respect to j is a nontrivial feature originating from the finite bandwidth of the
lattice model; in the limit of a large j , the formation of the bound state localized at
the impurity site will prevent other electrons from approaching the junction, leading
to a decrease of G in the limit of j → ∞. We remark that the confirmation of this
nonmonotonic feature of G is a nontrivial test which the conventional approach has
failed to pass [80, 150, 158].

At a finite bias V , the differential conductance exhibits the nonlinear behavior (see
Fig. 5.11c). We make two remarks on the numerical results presented here. First, the
current fluctuation in a steady-state regime causes a numerical error which can easily
mask small changes of G in a perturbative regime V � TK. As a result, a precise test
of the quadratic behavior of G at small bias [58, 59, 61, 69] is rather difficult in our
real-time calculations. This difficulty should be circumvented by using a different
quench operation. Second, numerical results on the current and conductance will
no longer be faithful in a high-bias regime V � TK at which the bias can be of
the order of the Fermi energy and the finite bandwidth. Such a difficulty has been
commonly found in numerical methods performed in real-space basis [61, 69] and
can be circumvented by relying on the infinite-bandwidth approximation by using the
momentum basis. We still emphasize that, in the intermediate regime V ∼ TK, the
present implementation of our variational approach already provides faithful results.

At a finite bias andmagnetic field, the conductance exhibits a peak around hz = V
(see Fig. 5.11d), which is caused by the level matching of the Fermi surfaces in each
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(a)

(d) (e)

(b)

(c)

Fig. 5.11 Differential conductanceG plotted against (a,d) hz/TK, (b) j and (c) V/TK. (inset, a) Our
results (black open circles) are compared with the low-field asymptotic scaling (blue dashed line).
In (a–d), we set L = 200 for each lead and use a j = 0.35 and V = 0, b hz = 0 and V = 0.8th, c
hz = 0 and j = 0.4, and d j = 0.35. e Dynamics of the magnetization 〈σ̂ z

imp(t)〉 at finite hz . In (e),
we set L = 100 for each lead and use j = 0.35 and V = 0.8. Reproduced from Fig. 4 of Ref. [138]
and Fig. 9 of [85]. Copyright © 2018 by the American Physical Society

lead. Due to a partial destroy of the Kondo singlet (which can be inferred from
the nonzero magnetization in Fig. 5.11e), the peak values of G are smaller than the
unitarity limit 2e2/h. These characteristic features are consistent with the analytical
results at the Toulouse point [80] and with the previous findings in the Anderson
model [58, 69, 108].

Finally, wemake a remark on the asymmetric behavior of the conductance against
the bias and magnetic field, whose origin has not been fully understood here. As we
mentioned above, several features found in our results are consistent with the results
at the Toulouse point. These include the peak of G at hz ∼ V and the asymmetry
in the conductance behavior at hz = 0 with changing V and the one at V = 0 with
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changing hz . In fact, the latter has been argued to be a nontrivial feature that is absent
in the conventional bosonization approach [80]. Yet, we have found discrepancies
between the asymmetric behavior at the Toulouse point [80] and that found in our
results (which are obtained with the finite bandwidth and not in the Toulouse limit).
It merits further study to elucidate the origin of the discrepancies observed here.

5.6 Experimental Implementation in Ultracold Gases

We here briefly discuss how one can use ultracold alkaline-earth atoms to exper-
imentally study the predicted nonequilibrium dynamics in the anisotropic Kondo
model. We consider fermionic atoms prepared in the ground state |g〉 and trap them
in an optical lattice. The ground-state atom has two internal degrees of freedom | ↑〉
and | ↓〉 corresponding to two spin states. At the initial time, two internal states are
equally populated and thus the Fermi sea is formed. A weak laser pulse is then used
to excite a single atom into the excited state |e〉 (see Fig. 5.12a). Because |e〉 has
a different polarizability from |g〉, we can create a deep optical lattice acting only
on an excited atom and freeze its orbital motion, mimicking the localized impurity.
We denote two internal states of the excited atom by | ⇑〉 and | ⇓〉. In contrast, sur-
rounding ground-state atoms can move and play a role as itinerant fermions. The
total system is governed by the following Hamiltonian:

Ĥtot =
∑

kσ

εk ĝ
†
kσ ĝkσ + V√

L

∑

kσ

ĝ†0σ ĝkσ +U (n̂g0↑ + n̂g0↓)(n̂e0⇑ + n̂e0⇓)

+Uex

∑

σ �=σ ′
ĝ†0σ ′ ê

†
0σ ê0σ ′ ĝ0σ − δg

2

∑

kσ

σ n̂gkσ − δe

2

∑

σ

σ n̂e0σ , (5.101)

where εk is the energy dispersion with wavevector k, ĝkσ annihilates a ground-state
atom with wavevector k and spin σ =↑,↓, ĝ0σ (ê0σ ) annihilates the ground-state
(excited-state) atom at the impurity site l = 0, n̂gkσ = ĝ†kσ ĝkσ and n̂e0σ = ê†0σ ê0σ are
the occupation numbers of ground- and excited-state atoms at each mode, V = √

zth
is the mixing term with z being the nearest-neighbor coordination number and th
being a hopping parameter, U = (U−

eg +U+
eg)/2 and Uex = (U−

eg −U+
eg)/2 are the

on-site energy and spin-exchange interactions with U−
eg (U

+
eg) being proportional to

the triplet (singlet) scattering length a−
eg (a+

eg), and δg (δe) is the Zeeman energy in
the ground (excited) state.

In experimentally realizable situations (see e.g., Ref. [34]), due to the large scat-
tering lengths a±

eg , the system can satisfy the following condition:

εk, δe,g, V � U,Uex. (5.102)

In this limit, following the standard perturbation theory, we can show that the original
Hamiltonian (5.101) reduces to the effective Hamiltonian
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Fig. 5.12 A possible experimental implementation of the anisotropic Kondo model in ultracold
fermionic alkaline-earth atoms. a At the initial time, two spin states of atoms in the ground state
|g〉 (blue) are equally populated, forming the Fermi sea. A laser pulse is then used to excite a single
atom into the excited state |e〉 (red), which is tightly localized by a deep optical lattice and acts
as a localized impurity. b Parameter regimes explored by periodically driving the Zeeman field
δ(τ ) = δ0 cos(ωτ). The dimensionless Kondo couplings j‖ = ρF J‖ and | j⊥| = ρF |J⊥| with ρF
being the density of states at the Fermi sea are determined for (top panels)ω = 0.8U−

eg and (bottom)
ω = 0.95U−

eg with increasing δ0. Parameters are chosen to be th = 0.35U−
eg and U+

eg = 15U−
eg as

realized in Ref. [34]. Reproduced from Figs. 1 and 5 of Ref. [147]. Copyright © 2018 by the
American Physical Society

ĤK =
∑

kσ

(εk − σδg/2)ĝ
†
kσ ĝkσ + K

∑

kk ′σ

ĝ†kσ ĝk ′σ + J⊥
4

∑

γ=x,y

σ̂ γ
e

∑

σσ ′
ĝ†0σ σ

γ

σσ ′ ĝ0σ ′

+ J‖
4

σ̂ z
e

∑

σσ ′
ĝ†0σ σ z

σσ ′ ĝ0σ ′ − he
2

σ̂ z
e − hg

2

∑

σσ ′
ĝ†0σ σ z

σσ ′ ĝ0σ ′, (5.103)

where σ̂ e is the localized spin-1/2 operator and parameters J⊥,‖ and K can be obtained
from the microscopic parameters as functions of δ = δe − δg:

J⊥(δ) = 2V 2Uex(U 2 −U 2
ex)

(U 2 −U 2
ex)

2 −Uδ2
, J‖(δ) = 2V 2Uex(U 2 −U 2

ex)

(U 2 −U 2
ex)

2 −U 2δ2
,

K (δ) = −V 2

2

2U −Uex

U 2 −U 2
ex

− δ2

4

UUex

(U 2 −U 2
ex)

2
J⊥(δ),

he(δ) = −hg(δ)=δ

(
1

2
− V 2U 2

ex

(U 2 −U 2
ex)

2 −U 2δ2

)
.

(5.104)

The second term in the first line of the right-hand side of Eq. (5.103) can be eliminated
using a basis transformation of the bath modes and has no significant effect on the
low-energy Kondo physics. The terms including J⊥ and J‖ describe the anisotropic
Kondo couplings while those including he and hg represent themagnetic fields acting
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on the impurity and the bath. In particular, at the SU(2)-symmetric point (δ = 0), we
can simplify the Kondo coupling as

J = V 2

(
1

U+
eg

− 1

U−
eg

)
. (5.105)

To control the Kondo couplings and the magnetic fields separately, one can use
a periodically modulated Zeeman field δ(τ ) = δ0 cos(ωτ) + δ1. Since the driving
frequency is much faster than the low-energy dynamics, we can employ the stan-
dard Floquet expansion and obtain the parameters in the effective Hamiltonian. For
instance, if we set the static Zeeman field to be zero δ1 = 0, themagnetic fields hg and
he vanish because they are odd functions of δ and thus cancel out after taking the time
average. Typical parameter regimes that can be explored in the experimental setup
of Ref. [34] are plotted in Fig. 5.12b. In particular, one can go across the phase tran-
sition line via the periodic-drive control. Thus, the spatiotemporal dynamics (such
as the long-time crossover dynamics near the phase boundary) predicted in the pre-
vious section can be experimentally tested by, for example, using the site-resolved
measurements with quantum gas microscopy.

5.7 Generalization to a Bosonic Environment

5.7.1 General Formalism

We here generalize our variational approach to a bosonic environment. This can be
done by combining the canonical transformation with the bosonic Gaussian states, as
the construction of the disentangling transformation presented in Sect. 5.2 does not
rely on particle species. To be concrete, we consider the following bosonic quantum
impurity Hamiltonian

Ĥb =
∑

lmα

b̂†lαhlmb̂lα + ŝimp · �̂b, (5.106)

where the first term denotes a noninteracting bosonic environment with b̂†lα (b̂lα)
being a bosonic creation (annihilation) operator corresponding to a bath mode l =
1, 2, . . . , Nb and the spin-z component α =↑,↓ and hlm being an arbitrary Nb × Nb

Hermitianmatrix describing a single-particle Hamiltonian of a bath. The second term
describes a generic impurity-bath interaction, in which we introduce the bosonic
bath-spin density operator including the Nb × Nb interaction couplings gγ

lm labeled
by γ = x, y, z as

�̂
γ

b = 1

2

∑

lmαβ

gγ

lmb̂
†
lασ

γ

αβ b̂mβ. (5.107)
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Disentangling transformation

To disentangle the impurity spin, we can use the unitary transformation in Sect. 5.2
by just replacing the fermionic operators with the bosonic ones:

Ûb = exp

[
iπ

4
σ̂

y
impP̂b

]
= 1√

2

(
1 + i σ̂ y

impP̂b

)
, (5.108)

where we denote the bosonic bath parity operator as

P̂b = exp

[
iπ

2

(
∑

l

σ̂ z
b,l + N̂B

)]
≡ eiπ N̂B,↑ . (5.109)

We here represent the bath-spin density of mode l and the total particle number of
bosons by

σ̂
γ

b,l ≡
∑

αβ

b̂†lασ
γ

αβ b̂lβ, N̂B =
∑

lα

b̂†lα b̂lα, (5.110)

and N̂B,↑ is the number of spin-up bosons. We can then transform the Hamiltonian
as ˆ̃Hb = Û †

b ĤbÛb = ˆ̃Hb,0 + ˆ̃Hb,1, (5.111)

where ˆ̃Hb,0 is the quadratic part of the transformed Hamiltonian

ˆ̃Hb,0 =
∑

lmα

b̂†lαhlmb̂mα + sximp�̂
x
b , (5.112)

while ˆ̃Hb,1 is its interacting part

ˆ̃Hb,1 = P̂b

(
− i�̂ y

b

2
+ ŝ ximp�̂

z
b

)
. (5.113)

Bosonic Gaussian states

In the transformed frame, we approximate the bath wavefunction by the bosonic
Gaussian states. The bosonic Gaussian states are represented by exponentials of
a function of bosonic operators up to quadratic terms. In analogy with the Majo-
rana representation for the fermionic case, it is useful to introduce the position and
momentum representations of the bosonic operators:

φ̂ = (
x̂1↑, · · · , x̂Nb↑, x̂1↓, · · · , x̂Nb↓, p̂1↑, · · · , p̂Nb↑, p̂1↓, · · · , p̂Nb↓

)T
, (5.114)

x̂lα = b̂lα + b̂†lα, p̂lα = i(b̂†lα − b̂lα). (5.115)
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The bosonic Gaussian state |�b,G〉 is then fully characterized by its mean field φ and
covariance matrix �b:

φ = 〈φ̂〉b,G, �b = 1

2

〈{
δφ̂, δφ̂

T
}〉

b,G
, (5.116)

where δφ̂ = φ̂ − φ, and 〈· · · 〉b,G denotes the expectation valuewith respect to |�b,G〉.
We can explicitly express |�b,G〉 by

|�b,G〉 = eiθ0e
i
2 φ̂

T
σφe− i

4 φ̂
T
Xbφ̂|0〉, (5.117)

where σ = iσ y ⊗ I2Nb and the matrix Xb is related to the covariance matrix �b via

�b = eσ Xb
(
eσ Xb

)T
. (5.118)

We here include the phase factor θ0 that will be necessary when we calculate the
spectrum function later.

The variational energy is given by

Eb,var = 〈 ˆ̃Hb〉b,G = 1

4
Tr
[HT

b,0�b
]+ 1

4
φTHb,0φ + 1

4
Tr
[GT�P

b

]− 1

4
Tr
[Hb,0

]
,

(5.119)
whereG = −iσ y ⊗ gy

lm + σ x
impσ

z ⊗ gzlm is a matrix including the impurity-bath cou-
plings and we denote the quadratic partHb,0 as

Hb,0 = S [I2 ⊗ h0] , h0 = I2 ⊗ diag(hlm) + (σ x
imp/4)σ

x ⊗ gxlm . (5.120)

We here define the symmetrization S[·] of a matrix by

S[A] ≡ Re

[
A + AT

2

]
. (5.121)

The matrix �P
b is defined in the similar manner as in the fermionic case:

�P
b = 〈P̂bb̂†b̂〉GS, b̂ = (b̂1↑, · · · , b̂NB↑, b̂1↓, · · · , b̂NB↓), (5.122)

which can be represented as

�P
b = −�z〈P̂b〉GS(I2Nb ,−iI2Nb)

(
�−1
B

)T
[
1

2
(�b − I4Nb) + φφT�−1

B

](
I2Nb

iI2Nb

)
,

(5.123)
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where the mean value of the bath parity can be expressed as

〈P̂b〉b,G = 1√
det(�B/2)

e− 1
2 φT�−1

B (1+�)φ, (5.124)

and we introduce the matrix �B as

�B = (I4Nb + �)�b + I4Nb − � (5.125)

with � = I2 ⊗ �z and �z = σ z ⊗ INb .

Variational time-evolution equations

Employing the time-dependent variational principle, we can derive the equations of
motions for the mean field φ and the covariance matrix �b in the same manner as
performed in Sect. 5.3.2. The results are

dφ

dt
= −�bhφ,

d�b

dt
= σh�σ − �bh��b (5.126)

for the imaginary-time evolution and

dφ

dt
= σhφ,

d�b

dt
= σh��b − �bh�σ (5.127)

for the real-time evolution. Here, we introduce the functional derivatives

hφ = 2
δEb,var

δφ
, h� = 4

δEb,var

δ�b
. (5.128)

From Eqs. (5.119), (5.123) and (5.124), after doing some calculations we can obtain
their analytical expressions as follows:

hφ = Hb,0φ − 1

2
Tr
[GT�P

b

]
�−1
B (1 + �)φ

−〈P̂b〉�−1
B S

[(
I2Nb

−iI2Nb

)
�zG(I2Nb , iI2Nb)

]
(�−1

B )Tφ, (5.129)

h� = Hb,0 + S
[
1

2
Tr
[GT�P

b

]
�−1
B (1 + �)

(
ϒb − I4Nb

)

+〈P̂b〉GS�−1
B

(
I2Nb

−iI2Nb

)
�zG(I2Nb , iI2Nb)(�

−1
B )T

(
2ϒb − I4Nb

)]
, (5.130)

where we introduce
ϒb = φφT�−1

B (1 + �). (5.131)



184 5 Quantum Spin in an Environment

Calculation of the phase factor

If one wants to calculate the spectral function or the overlap between the two time-
dependent wavefunctions, one has to take into account the phase factor θ0(t) of the
time-evolving wavefunction (see Eq. (5.117)). To be specific, let us consider the
overlap S(t):

S(t) = 〈�0|�t 〉, |�t 〉 = e−i Ĥbt |�0〉, (5.132)

which can be directly related to the absorption spectrum as discussed in the next
subsection (see Eq. (5.145)). In the present variational approach, S(t) is expressed
as

S(t) = eiθ0(t)e− 1
2 |δβ(t)|2eδβ∗(t)�b(t)δβ

∗(t), (5.133)

where we denote

δβ(t) = β(t) − β(0), β = 1

2
Y †φ (5.134)

with

Y =
(

I2Nb I2Nb

−iI2Nb iI2Nb

)
. (5.135)

The real-time evolution equations of the variational parameters θ0(t) and �b(t) can
be obtained as

dθ0

dt
= −〈 ˆ̃Hb〉b,G + 1

4
δφThφ + 1

4
Tr [h��b] − 1

2
Tr[h1] − Tr

[
h†2�b

]
, (5.136)

i
d�b

dt
= 1

2
h2 + h1�b + �bh

T
1 + 2�bh

†
2�b, (5.137)

where we introduce

δφ = φ(t) − φ(0),

(
h1 h2
h†2 h

T
1

)
= 1

2
Y †h�Y. (5.138)

5.7.2 Application to the Rydberg Central Spin Problem

We here apply the variational approach developed in the previous section to a novel
type of a strongly correlated system, namely, the Rydberg central spin problem
(Fig. 5.13). We consider a Rydberg impurity immersed in a three-dimensional Bose
gas [109–111, 159], which can be prepared by exciting a small fraction of atoms
in the original BEC to a Rydberg state. Due to the scattering between the valence
electron of theRydberg impurity and the surrounding bosons, the impurity effectively
creates a long-range oscillating potential for the bosons, which is known as the Fermi
pseudo-potential [160].
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Fig. 5.13 A Rydberg impurity interacts with high-density bosons via triplet and singlet scattering
channels. The Rydberg electron spin plays a role as the central spin that interacts with surrounding
mobile spins via long-range interactions created by molecular potentials. The formation of the
many-body-dressed molecular state manifests itself as the multiple sharp peaks in the absorption
spectrum (top left panel). The Rydberg central spin exhibits a long-lasting precessionmanipulatable
by an external magnetic field (top right panel). Reproduced from Fig. 1 of Ref. [161]. Copyright ©
2019 by the American Physical Society

Choosing a certain Rydberg state, the long-range potential created by the Rydberg
impurity can depend on the internal degrees of freedom of the surrounding bosons
[111]. The resulting Hamiltonian can be written as

Ĥ =
∑

α=⇑,⇓

∫
drb̂†α(r)ĥ0b̂α(r) + Ŝi ·

∫
drg(r)Ŝr, (5.139)

ĥ0 ≡ − ∇2

2m
+ V0(r), Ŝr ≡

∑

α,β=⇑,⇓
b̂†α(r)

(σ

2

)

αβ
b̂β(r), (5.140)

where b̂†α(r) (b̂α(r)) creates (annihilates) a boson with an internal state α =⇑,⇓ at
position r and Ŝi = σ̂ i/2 is the electron spin of the Rydberg impurity. We omit the
hyperfine coupling and neglect the p-wave scattering contribution for the sake of
simplicity. We denote

V0(r) = 3VT (r) + VS(r)
4

, g(r) = VT (r) − VS(r), (5.141)
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as linear superpositions of the triplet and singlet scattering potentials VT and VS that
are isotropic. It is convenient to define the following single-particle computational
basis:

ĥ0ψl(r) = εlψl(r), b̂†lα =
∫

drψl(r)b̂†α(r), (5.142)

where l = (n, L , M) denotes a set of quantum numbers including a principal quan-
tum number n, an angular momentum L , and a magnetic quantum number m. Here-
after, we can focus on the L = M = 0 sector and identify l as n because the initial
state resides in this sector and the interaction parameter g(r) is isotropic. We can
then rewrite the Hamiltonian as

Ĥ =
∑

lα

εl b̂
†
lα b̂lα + Ŝi · �̂, (5.143)

�̂ = 1

2

∑

lmαβ

glmb̂
†
lα (σ )αβ b̂mβ, glm ≡

∫
drg(r)ψ∗

l (r)ψm(r). (5.144)

To analyze the out-of-equilibrium dynamics of this system, we use our general vari-
ational approach developed in the previous subsection. It should be challenging (if
not impossible) to analyze this system with the other theoretical approaches due
to the long-range nature of the impurity-bath couplings. An experimentally observ-
able quantity is the absorption spectrum A(ω), which is the Fourier spectrum of the
overlap:

A(ω) = Re
∫ ∞

0
eiωt S(t), S(t) = 〈�0|�t 〉, |�t 〉 = e−i Ĥ t |�0〉. (5.145)

The overlap S(t) can be calculated from Eq. (5.133). To obtain the time evolutions of
themeanfieldφ and the covariancematrix�b,we integrateEq. (5.127) by substituting
the parameters εl and glm into general expressions of the functional derivatives in
Eqs. (5.129) and (5.130). The phase factor of the variational state can be calculated
by integrating Eqs. (5.136) and (5.137).

The initial state is chosen as

|�0〉 = | ↑〉imp|BEC⇓〉, (5.146)

which can be prepared in an experiment of Tilman Pfau’s group [109–111]. Here,
only the Rydberg impurity spin is prepared in the spin-up state while all the sur-
rounding bosons are prepared in the spin-down state and occupy the lowest-energy
single-particle state in free space. This condition results in the conservation law
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σ̂ z
i + 2N̂B,⇑ = 1.6 For this initial condition, the problem will be exactly solvable in

the limit of an infinite massm → ∞, in which the system reduces to the central spin
model [162] (see Appendix B).

The corresponding initial conditions for the variational parameters are

φ(t = 0) = √NBY

(∫
drψ∗

l (r)ψ0(r)δα⇓∫
drψl(r)ψ∗

0 (r)δα⇓

)
, �b(t = 0) = I4Nb , (5.147)

where NB is the total number of surrounding bosons in the system andψ0 denotes the
wavefunction of the lowest-energy single particle statewithout theRydberg potential.
In practice, we impose a large distance cutoff R to obtain the initial coefficients as

∫
drψ∗

l (r)ψ0(r) =
∫ R

0
drχ∗

l (r)

√
2

R
sin
(π

R
r
)

, (5.148)

where χl(r) denotes the radius wavefunction of an eigenstate l. The particle number
NB can be related to the density ρ via

ρ = NB |ψ0(r = 0)|2 ⇐⇒ NB =
(
4

3
πR3

)
ρ

(2π2/3)
. (5.149)

We plot numerical results on the absorption spectra A(ω), the magnetization dynam-
ics mz(t) = 〈σ̂ z(t)〉 and their spectra m̃z(ω) at different densities of bosons in
Fig. 5.14. Here we assume using 87Rb atoms and exciting an atom into Rb(87s).
For the sake of comparisons, we also plot the results for the solvable case with an
infinite mass in the top panels. As the density increases, the spectrum approaches
a Gaussian profile due to stochastic occupations of bound-state energies by a large
number of bosons [159]. The mean frequency can be estimated from

ωmean = NB

〈
− ∇2

2m
+ VT + VS

2

〉

0

, (5.150)

where 〈· · · 〉0 denotes an expectation value with respect to the initial wavefunction
ψ0(r).

We find two features that are unique to the finite-mass case. Firstly, one can
find sharp peaks present in the spectra, which are positioned with a roughly equal-
spacing frequency. The spacing frequency of peaks in the spectra is roughly equal
to the dominant bound-state energy of the potential (VT + VS)/2. The appearance
of the potential (VT + VS)/2 can be understood from the mean-field Hamiltonian
experienced by the spin-⇓ bath bosons obtained by neglecting the spin-exchange
coupling:

6In practical calculations, this spin conservation can be violated due to numerical errors associated
with integrating nonlinear variational equations. To remedy this, we implement the penalty term
that can ensure the spin conservation with an error below 1% (see Appendix A).



188 5 Quantum Spin in an Environment

Fig. 5.14 a,d Absorption spectra A(ω) at different particle densities ρ of (a) mobile and (d)
immobile (i.e., infinite mass m→∞) environmental atoms. Dashed lines indicate the mean-field
shifts �mean (c.f. Eq. (5.150)) of the spectra. b, e Central-spin dynamics mz(t)=〈σ̂e(t)〉 after
the quench with (b) mobile and (e) immobile environmental spins. The results for the infinite-
mass case are obtained by taking the ensemble average over 105 different realizations of atomic
configurations (see Appendix B). (c, f) The Fourier spectra m̃z(ω) of the central-spin dynamics
mz(t) (c) at different particle densities ρ with a zero magnetic field and (f) at different magnetic
fields hz with ρ =1.8×1012 cm−3. The black dashed curve and line at the bottom planes indicate
the square root scaling ω∝√

ρ in (c) and the linear relation δω=−hz in (f), respectively. The
circles at the bottom planes indicate the mean frequencies of the spectra around the peak values.
Reproduced from Figs. 2 and 4 of Ref. [161]. Copyright © 2019 by the American Physical Society

Ĥ ′
0 =

∫
drb̂†⇓(r)ĥ0b̂⇓(r) + Ŝzi ·

∫
drg(r)Ŝzr (5.151)

=
∫

drb̂†⇓(r)
[
− ∇2

2m
+ VT (r) + VS(r)

2

]
b̂⇓(r), (5.152)

where we use the initial condition Ŝzi = 1/2 and Ŝzr = −b̂†⇓(r)b̂⇓(r)/2. To elucidate
this, we calculate the spectrum by just quenching the noninteracting Hamiltonian
Ĥ ′

0. The same feature such as the equal spacing corresponding to the most dominant
bound-state energy for (VT + VS)/2 also emerges in this simple model. Yet, we still
find the nonzero difference between this single-particle bound-state energy and the
equal-spacing frequency found in the interactingmodel, which can be interpreted as a
many-body shift of the bound-state energy. This many-body feature can be explicitly
demonstrated by plotting the correlation C(ν)=∫ dωδA(ω)δA(ω+ν) of the spec-
trumwith detuning ν, where δA(ω) denotes the absorption spectrum subtracted from
the fitted-Gaussian profile (see Fig. 5.15).

Secondly, the magnetization mz(t) exhibits long-lasting fast oscillations that are
absent in the infinite-mass case due to an incoherent summation over atomic posi-
tions (see Appendix B). The nondecaying magnetization is one of the key features in
the central spin problem with an initially fully polarized environment; only a small
portion of a many-body state with the opposite central spin can be admixed due to a
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Fig. 5.15 Correlation C(ν) of the absorption spectrum with detuning ν at ρ =3 × 1012 cm−3

(main panel). The blue solid curve (red dashed curve) shows the result obtained by quenching
the full interacting Hamiltonian Ĥ (the quadratic Hamiltonian Ĥ ′

0). The red dashed vertical lines
indicatemultiple values of the deepest bound-state energyωb of themeanRydberg potential Vmean =
(VT+VS)/2 (c.f. inset), which match with the peak positions of the quadratic result but not with the
interacting one, indicating the many-body dressing of the Rydberg molecular state. Reproduced
from Fig. 3 of Ref. [161]. Copyright © 2019 by the American Physical Society

large energy cost to flip the central spin immersed in a polarized environment. The
Rydberg spin exhibits a long-lasting precession whose frequencyωmag becomes high
as density is increased. To further investigate the dependence of ωmag on density ρ,
in Fig. 5.15c we plot the Fourier spectra m̃z(ω) of the dynamics mz(t). As inferred
from the dashed curve at the bottom of the plot, we find the square root scaling
ωmag∝√

ρ that is distinguished from the conventional linear scaling found in studies
of the central spin problem. The nonanalytic behavior implies that a nonperturbative
treatment (as performed here) is essential to understanding of the Rydberg central
spin problem. The precession frequency and amplitude of the central spin can be
manipulated by magnetic field hz . Figure5.15f shows Fourier spectra m̃z(ω) at dif-
ferent hz . As magnetic field is applied, the precession frequency shifts linearly with
hz from the zero-field value (see black dashed line at the bottom in Fig. 5.15f) while it
eventually exhibits the nonlinear behavior at a large field. The precession amplitude
is enhanced (suppressed) when a magnetic field is applied in such a way that the
resonance is approached (departed) (c.f. Figs. 5.13 and 5.15f). These magnetic-field
dependences are consistent with those found in the conventional central spin problem
[163], suggesting a possibility to control the electron spin of dense Rydberg gases in
an analogous way as in solid-state qubits [112, 162, 164–167].
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5.8 Conclusions and Outlook

In this chapter, we have studied in- and out-of-equilibrium physics of a strongly
correlated open quantum system by focusing on its most fundamental paradigm, a
quantum impurity. There, the presence of the strong system-environment entangle-
ment plays a central role in understanding the physics. Such a nontrivial role of the
system-environment entanglement has not been addressed in the studies of the first
part of this Thesis, as they rely on the assumption that an environment (or a meter)
is memoryless and thus the system-environment correlation is (almost) absent.

More specifically, we have developed a versatile and efficient theoretical approach
to study the ground-state properties and nonequilibrium dynamics of generic quan-
tum spin-impurity systems [85, 138, 147, 161, 168]. This variational approach has
been motivated by the original papers by Tomonaga [86] and Lee, Low and Pines
[87]. A key idea is to introduce a canonical transformation that decouples the impu-
rity and the bath degrees of freedom such that the impurity dynamics can be made
completely frozen in the transformed frame. We have constructed such a decoupling
transformation for spin-impurity models by employing the conserved parity operator
in the total Hamiltonian. We have also discussed its generalization to two-impurity
systems and the Anderson model. Combining the constructed canonical transforma-
tion with the fermionic Gaussian states, we have presented a family of variational
states that can efficiently represent nontrivial entanglement between the impurity spin
and the environment. Integrating the imaginary- and real-time evolutions projected
on this variational manifold, one can study ground-state and dynamical properties
of spin-impurity models on demand. We have throughly benchmarked our varia-
tional approach with the MPS-based method, the Bethe-ansatz solution, the known
nonperturbative scalings and conductance behavior. A remarkable efficiency has
been achieved in our approach, as we found accuracy comparable to the MPS-based
method with several orders of magnitude fewer variational parameters. The sim-
plicity of our variational approach will allow one to provide physical insights into
challenging problems of strongly correlated open quantum systems.

Our approach has already found applications to exploring new types of nonequilib-
rium phenomena that have not been studied in the other methods. Examples include
the long-time crossover dynamics in the FM easy-plane in the anisotropic Kondo
model and the spatiotemporal environment dynamics in the two-lead Kondo model.
Such long-time spatiotemporal dynamics are difficult (if not impossible) to obtain
in the previous approaches. We propose to use quantum gas microscopy to experi-
mentally test the predicted dynamics. We also generalize our approach to a bosonic
environment and apply it to the novel type of the impurity system that can be realized
by Rydberg atoms. The predicted absorption spectrum can be tested with the state-
of-the-art experimental techniques of ultracold atoms. In these respects, one of the
remarkable features in our approach is that it enables one to make quantitative com-
parisons between theory and experiments under nonequilibrium conditions even in
long-time regimes. This advantage is particularly important in view of recent devel-
opments of simulating quantum dynamics such as in ultracold atoms [34, 143–146,
149, 169–179] and quantum dots [35–39].
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The present variational approach can be readily generalized in many ways. For
example, our formulation can be applied to systems associated with disorder [180],
an interacting bath (e.g., as in the Kondo-Hubbard model [181]), multiple channels
[18, 38, 182], and long-range interactions [183, 184]. The canonical transformations
introduced in Sects. 5.2.2 and 5.2.3 can be used to analyze two-impurity systems and
theAnderson-typeHamiltonian. The present approach can be also generalized to ana-
lyze quantum pumping and driven systems, in which previous studies have mainly
focused on noninteracting systems [185, 186]. It merits a further study to analyze the
full-counting distribution in charge transport based on our approach. Most of pre-
vious studies in this direction have been restricted to (bosonized) one-dimensional
models [187] and noninteracting systems [188]. Testing the maximally fast informa-
tion scrambling [189] in themulti-channel systems [72] and quasi-integrable systems
[190]will be a particularly interesting direction.On another front, our approach could
be used as a new type of impurity solver for DMFT [21]. Another promising direction
is to generalize the present approach to Gaussian density matrices such that it can be
applied to dissipative systems [191] and finite-temperature systems.

Appendix A: Penalty Term to Ensure the Spin Conservation

We provide details on the penalty term used in Sect. 5.7.2 to ensure the spin con-
servation of the impurity and the bosonic bath. There, we consider the initial state
that is an eigenstate of the quantity σ̂ z

imp + σ̂ z
bath + N̂B ≡ σ̂ z

imp + 2N̂B,↑ with eigen-
value 1, where σ̂ z

imp and σ̂ z
bath are the spin-z components of the impurity spin and

the (pseudo spin-1/2) bosonic particles, respectively, and N̂B is the total number of
bosons. Since both the total spin-z component σ̂ z

imp + σ̂ z
bath and the particle number

N̂B are conserved, the above quantity should also be conserved during the variational
time evolution. However, in practical calculations, its value during the real-time evo-
lution is not necessarily kept exactly at the initial value σ̂ z

imp + 2N̂B,↑ = 1 due to
accumulated numerical errors caused by a highly nonlinear nature of the variational
equations, especially in a high-density regime of bosons.

As the spin conservation is essential to understand the physics in the Rydberg
Kondo problem in Sect. 5.7.2, we have to make sure that the conservation is satisfied
during the variational evolution. This can be achieved by adding the following penalty
term to the Hamiltonian:

V̂ = λ
(
σ̂ z
imp + 2N̂B,↑ − 1

)2
, (A.1)

where we choose λ as an appropriate value to ensure the spin conservation. In the
transformed frame, it is written as

ˆ̃V = Û †
b V̂ Ûb = λ

(
σ̂ x
impP̂b + 2N̂B,↑ − 1

)2
. (A.2)
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Its expectation value with respect to the bosonic Gaussian state is

〈 ˆ̃V 〉b,G = λ
(
2 − 4〈NB,↑〉b,G + 4〈N̂2

B,↑〉b,G − 2σ x
imp〈P̂b〉b,G + 4σ x

impTr
[
P↑�P

b

])

= λ

(
2 − Tr[P↑(�b − I4Nb )] − φT P↑φ

+ 1

4

(
Tr[P↑(�b − I4Nb )] + φT P↑φ

)2 + 1

2

(
Tr
[
P↑�b P↑�b

]− Tr
[
P↑
])+ φT P↑�b P↑φ

− 2σ x
imp〈P̂b〉b,G + 4σ x

impTr
[
P↑�P

b

])
, (A.3)

where P↑ = I2 ⊗ ((σ z + 1)/2 ⊗ INb). After some calculations, we can obtain its
functional derivative with respect to the mean field φ as

hV
φ = 2

δ〈 ˆ̃V 〉b,G
δφ

= λ

[
2
(−2 + Tr[P↑(�b − I4Nb)] + φT P↑φ

)
P↑φ + 4P↑�b P↑φ

+ δ

δφ
(−4σ x

imp〈P̂b〉b,G + 8σ x
impTr

[
P↑�P

b

]
)

]
, (A.4)

where the last term is given by

δ

δφ
(−4σ x

imp〈P̂b〉b,G + 8σ x
impTr

[
P↑�P

b

]
)

= σ x
imp

[(
4〈P̂b〉b,G − 8Tr

[
P↑�P

b

])
�−1
B (I4Nb + �)φ

−16〈P̂b〉b,G�−1
B S

[(
I2Nb

−iI2Nb

)
�z P↑(I2Nb , iI2Nb)

]
(�−1

B )Tφ

]
. (A.5)

In the similar manner, the functional derivative with respect to the covariance matrix
�b can be obtained as

hV
� = 4

δ〈 ˆ̃V 〉b,G
δ�b

= λ

[
2
(−2 + Tr[P↑(�b − I4Nb)] + φT P↑φ

)
P↑ + 4P↑(�b + φφT )P↑

+ δ

δ�b
(−8σ x

imp〈P̂b〉b,G + 16σ x
impTr

[
P↑�P

b

]
)

]
, (A.6)
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Fig. 5.16 Typical time evolutions of the conserved quantity σ̂ z
imp + N̂B,↑ at different densities of

bosons (see Sect. 5.7.2 for details about the quench protocol)

where the last term is given by

δ

δ�b
(−8σ x

imp〈P̂b〉b,G + 16σ x
impTr

[
P↑�P

b

]
)

= σ x
impS

[
(−4〈P̂b〉b,G + 8Tr

[
P↑�P

b

]
)�−1

B (I4Nb + �)
(
ϒb − I4Nb

)

+16〈P̂b〉b,G�−1
B

(
I2Nb

−iI2Nb

)
�z P↑(I2Nb , iI2Nb)(�

−1
B )T

(
2ϒb − I4Nb

)]
. (A.7)

Figure5.16 shows typical time evolutions of the quantity σ̂ z
imp + N̂B,↑, which is con-

served with an error below ∼1%.

Appendix B: Exactly Solvable Dynamics of the Central Spin
Problem

Here we explain how the numerical results for the infinite-mass case in Fig. 5.14
in this chapter have been obtained. In the limit of an infinite mass m → ∞ in the
Hamiltonian (5.143), the quench dynamics starting from the initial condition (5.146)
is exactly solvable via the Laplace transformation [162]. In practice, to obtain the
absorption spectrum and the magnetization dynamics, we proceed as follows.

First of all, we randomly generate a set of positions of atoms {ri }Ni=1 according
to the initial wavefunction

∏N
i=1 ψ0(ri ). We then obtain the corresponding values of

the parameters

V0 ≡
N∑

i=1

V0(ri ) =
N∑

i=1

3VT (ri ) + VS(ri )
4

, gi ≡ g(ri ) = VT (ri ) − VS(ri ) (B.1)
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in the (infinite-mass) Hamiltonian

Ĥ {ri }
m→∞ = V0 + Ŝimp ·

N∑

i=1

gi Ŝi . (B.2)

Since the total magnetization is conserved, the time-evolution is described by the
following wavefunction:

|�(t)〉 = ξ0(t)| ↑〉imp| ↓〉1 · · · | ↓〉N +
N∑

i=1

ξi (t)| ↓〉imp| ↓〉1 · · · | ↑〉i · · · | ↓〉N . (B.3)

Then, the Schrödinger equation becomes

i ξ̇0(t) = (V0 − G
4

)
ξ0 + 1

2

∑N
i=1 giξi , (B.4)

iξi (t) =
(
V0 + G−2gi

4

)
ξi + 1

2giξ0, (B.5)

where G =∑N
i=1 gi . This equation can be analytically solved by the Laplace trans-

formation

ξ̃ (s) =
∫ ∞

0
dtξ(t)e−st , (B.6)

dξ

dt
(t) → sξ̃ (s) − ξ(0), (B.7)

and by using the initial condition:

ξ0(0) = 1, ξi (0) = 0 (i = 1, 2, . . . N ). (B.8)

The result is

ξ0(t) = 1

2π i

∫

�

dωe−iωt−i�t

[
ω + G

2
− 1

4

N∑

i=1

g2i
ω + gi

2

]−1

, (B.9)

where � = V0 + G
4 and the contour � is chosen so that all the poles in the integral

lie above it. Using lHopital’s rule and performing the integration, we obtain

ξ0(t) = e−i�t
N+1∑

l=1

e−iωl t

1 + 1
4

∑N
i=1

g2i
(ωl+gi/2)2

≡ e−i�t
N+1∑

l=1

wl e
−iωl t , (B.10)
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where {ωl}N+1
l=1 is a set of poles in the integration, which can in practice be obtained by

diagonalizing
∑N

i=1 gi Ŝimp · Ŝi within the sector of interest here. In fact, Eq. (B.10)
directly gives the time evolution of the overlap:

S{ri }(t) = 〈�0|e−i Ĥ
{ri }
m→∞t |�0〉 = ξ0(t). (B.11)

Thus, the absorption spectrum is

A{ri }(ω) =
N+1∑

l=1

δ(ω − � − ωl)wl . (B.12)

We then repeat the same calculation of A{ri }(ω) for different realizations of atomic
configurations {ri } and take the ensemble average to obtain

A(ω) =
∑

{ri }
P({ri })A{ri }(ω), (B.13)

where P({ri }) is the distribution function of {ri } determined from the initial state.
The magnetization can be obtained from (c.f. Eq. (B.3))

mz(t) ≡ 〈σ̂ z
imp(t)〉 = |ξ0(t)|2 −

N∑

i=1

|ξi (t)|2 = 2|ξ0(t)|2 − 1. (B.14)

There are several important features which we can infer from the above analysis.
First, since the initial state is the equal superposition of the triplet and singlet states,
the mean value of A(ω) in a high-density regime can be estimated from

ωm→∞
mean = N

〈VT + VS〉0
2

, 〈· · · 〉0 ≡
∫

dr|ψ0(r)|2 · · · . (B.15)

As density increases, A(ω) will approach to a Gaussian distribution with this mean
value. Second, the Fourier spectrum of the magnetization mz(t) essentially shares
the same information with the absorption spectrum (c.f. Eq. (B.14)):

m̃z(ω) = 2
∫

dω′A∗(ω′ − ω)A(ω). (B.16)

If A(ω) is a Gaussian distribution, m̃z(ω) is also a Gaussian distribution but with
zero mean, indicating that its Fourier transform mz(t) will exhibit decoherence to
a finite magnetization. This decoherence can be understood as a consequence of
the incoherent summation over different atomic positions. These features have been
confirmed in the numerical results presented in Fig. 5.14.
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166. Witzel WM, Carroll MS, Morello A, Cywiński L, Das Sarma S (2010) Electron spin deco-
herence in isotope-enriched silicon. Phys Rev Lett 105:187602

167. TyryshkinAM, Tojo S,Morton JJL, RiemannH,AbrosimovNV,Becker P, Pohl H-J, Schenkel
T, Thewalt MLW, Itoh KM et al (2012) Electron spin coherence exceeding seconds in high-
purity silicon. Nat Mater 11:143

168. Ashida Y, Shi T, Schmidt R, Sadeghpour HR, Cirac JI, Demler E (2019) Efficient variational
approach to dynamics of a spatially extended bosonic kondo model. Phys Rev A 100:043618

169. Miranda M, Inoue R, Okuyama Y, Nakamoto A, Kozuma M (2015) Site-resolved imaging of
ytterbium atoms in a two-dimensional optical lattice. Phys Rev A 91:063414

170. Ashida Y, Ueda M (2015) Diffraction-unlimited position measurement of ultracold atoms in
an optical lattice. Phys Rev Lett 115:095301

171. Yamamoto R, Kobayashi J, Kuno T, Kato K, Takahashi Y (2016) An ytterbium quantum gas
microscope with narrow-line laser cooling. New J Phys 18:023016

172. Recati A, Fedichev PO, ZwergerW, vonDelft J, Zoller P (2005)Atomic quantumdots coupled
to a reservoir of a superfluid Bose-Einstein condensate. Phys Rev Lett 94:040404

173. Pekker D, Babadi M, Sensarma R, Zinner N, Pollet L, Zwierlein MW, Demler E (2011)
Competition between pairing and ferromagnetic instabilities in ultracold fermi gases near
feshbach resonances. Phys Rev Lett 106:050402

174. Bauer J, Salomon C, Demler E (2013) Realizing a Kondo-correlated state with ultracold
atoms. Phys Rev Lett 111:215304

175. Nishida Y (2013) SU(3) orbital Kondo effect with ultracold atoms. Phys Rev Lett 111:135301
176. Nishida Y (2016) Transport measurement of the orbital Kondo effect with ultracold atoms.

Phys Rev A 93:011606



References 203

177. Nakagawa M, Kawakami N (2015) Laser-induced Kondo effect in ultracold alkaline-earth
fermions. Phys Rev Lett 115:165303

178. Zhang R, Cheng Y, Zhai H, Zhang P (2015) Orbital feshbach resonance in alkali-earth atoms.
Phys Rev Lett 115:135301

179. Zhang R, Zhang D, Cheng Y, ChenW, Zhang P, Zhai H (2016) Kondo effect in alkaline-earth-
metal atomic gases with confinement-induced resonances. Phys Rev A 93:043601

180. Miranda E, Dobrosavljevic V, Kotliar G (1996) Kondo disorder: a possible route towards
non-fermi-liquid behaviour. J Phys Cond Matt 8:9871

181. Tsunetsugu H, Sigrist M, Ueda K (1997) The ground-state phase diagram of the one-
dimensional Kondo lattice model. Rev Mod Phys 69:809–864

182. Bao Z-Q, Zhang F (2017) Topological majorana two-channel Kondo effect. Phys Rev Lett
119:187701

183. Kleinbach KS, Meinert F, Engel F, Kwon WJ, Löw R, Pfau T, Raithel G (2017) Photoas-
sociation of trilobite Rydberg molecules via resonant spin-orbit coupling. Phys Rev Lett
118:223001

184. Camargo F, Schmidt R, Whalen JD, Ding R, Woehl G Jr, Yoshida S, Burgdörfer J, Dunning
FB, Sadeghpour HR, Demler E, Killian TC (2017) Creation of Rydberg Polarons in a Bose
Gas. arXiv:1706.03717

185. Romeo F, Citro R (2009) Adiabatic pumping in a double quantum dot structure with strong
spin-orbit interaction. Phys Rev B 80:165311

186. Peng Y, Vinkler-Aviv Y, Brouwer PW, Glazman LI, von Oppen F (2016) Parity anomaly and
spin transmutation in quantum spin Hall Josephson junctions. Phys Rev Lett 117:267001

187. Gutman DB, Gefen Y, Mirlin AD (2010) Bosonization of one-dimensional fermions out of
equilibrium. Phys Rev B 81:085436

188. Levitov LS, Lee H, Lesovik GB (1996) Electron counting statistics and coherent states of
electric current. J Math Phys 37:4845–4866

189. Maldacena J, Shenker SH, StanfordD (2016)A bound on chaos. JHighEnergy Phys 2016:106
190. Bentsen G, Potirniche I-D, Bulchandani VB, Scaffidi T, Cao X, Qi X-L, Schleier-Smith M,

Altman E (2019) Integrable and chaotic dynamics of spins coupled to an optical cavity. Phys
Rev X 9:041011

191. Cui J, Cirac JI, Bañuls MC (2015) Variational matrix product operators for the steady state
of dissipative quantum systems. Phys Rev Lett 114:220601

http://arxiv.org/abs/1706.03717


Chapter 6
Quantum Particle in a Magnetic
Environment

Abstract In this Chapter, we study yet another fundamental paradigm of a quantum
impurity, amobile spinless particle interactingwith amany-particle environment. The
ultimate building block of such a system is the formation of a polarization cloud of
collective excitations around an impurity,which is knownas a polaron cloud.Yet, ever
since the original paper by Landau and Pekar [1], it has long remained a fundamental
challenge to measure it in an unambiguous manner due to the elusive nature of the
polaron cloud. We here present a novel platform using ultracold atoms to overcome
the obstacle and allow one to directly probe the polaron-cloud formation in real time.
We reveal the emergence of rich nonequilibrium dynamics of the polaron cloud in
the strong-coupling regime that is not readily attainable in solid-state materials. To
our knowledge, our work suggests the first concrete possibility for a direct real-time
measurement of the polaron-cloud formation.

Keywords Polaron · Quantum impurity · Magnetic polaron · Ultracold atoms

6.1 Introduction: New Frontiers in Polaron Physics

In the previous Chapter, we have studied the strongly correlated physics in open
quantum systems by focusing on a localized spin-impurity system. Here, we study
yet another fundamental paradigm of quantum impurity problems, a mobile spinless
quantum particle interacting with a many-particle environment. There, a “dress” of
collective excitations around the impurity, which is known as a polaron cloud [2],
will be formed. A concept of a polaron was originally suggested by Landau and
Pekar [1] and has played a central role in determining thermodynamic properties
of various condensed matter systems [3–7]. Recent experiments in ultracold atoms
have allowed one to study polaron physics in strongly interacting regimes that are
not attainable in solid-state materials. These systems consist of imbalanced mixtures
of atomic gases; the density of one type of atoms is much lower than that of the other.
Thus, the minority atoms act as impurities while the majority atoms form a many-
particle environment interacting with the impurities. The impurities are dressed by
the collective excitations in the environment and constitute Fermi or Bose polarons
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depending on species of themajority atoms. Themajor advantages in ultracold atomic
physics include a high controllability of physical parameters and the ability to pre-
cisely measure dynamical properties, which are made possible by rich experimental
tool box in atomic, molecular and optical (AMO) physics such as radio-frequency
absorption measurements [8–15] and interferometric measurements [16–19]. Until
now, most studies of polaron physics in ultracold atoms have focused on impurities
immersed in a single-component Bose-Einstein condensate (BEC) [13–15, 20–43]
or Fermi gas of atoms [8–12, 44–52]. These studies have revealed new aspects of
polaron physics beyond theAnderson orthogonality catastrophe and the conventional
Fröhlich paradigm [16, 17, 19, 53, 54]. Nevertheless, revealing real-time dynamics
of the polaron cloud has still remained a great challenge in both ultracold atomic
gases and solid-state materials. Here, a subtle density change in the environment
associated with the formation of the polaron cloud poses a severe challenge for its
direct observation.

The aim of this Chapter is to show that the use of the Ramsey interferometry
performed on the environment can overcome this challenge and allow one to directly
measure the polaron-cloud formation in real time, which would provide an unam-
biguous signature of the system-environment entanglement. In previous setups [13,
20–31, 33–41], only phonon excitations are coupled to the impurity; this fact has
made a direct observation of the polaron cloud extremely difficult due to the minus-
cule nature of density modifications. We here consider a magnetic polaron [55] that
is dressed by spin-wave excitations in addition to phonon excitations. The Ram-
sey interferometry can then be used to directly measure the polaron cloud via this
magnetic dressing.

In Sect. 6.2, applying this idea to impurity atoms immersed in a two-species BEC
(see Fig. 6.1a), we analyze impurities interacting with a synthetic magnetic environ-
ment and derive an effective Hamiltonian addressed in this Chapter. In Sect. 6.3,
we show how one can use the Ramsey interferometry to directly measure the
polaron-cloud dynamics in real time to reveal its rich out-of-equilibrium physics.
In Sect. 6.4, we employ the time-dependent variational principle and study nonequi-
librium dynamics of the polaron cloud. We show that, in the strong-coupling regime,
the polaron cloud forms many-body bound states, which is a nontrivial feature that
is not readily attainable in solid-state systems. The formations of many-body bound
states lead to the dynamical ‘phase diagram’ of the polaron cloud (see Fig. 6.1b),
which corresponds to its distinct oscillatory dynamics (see Fig. 6.1c). One of the
main advantages in our scheme is that it can effectively enhance observable sig-
nals from the impurity. The reason is that, for each impurity, a multiple number
of excitations in the bath are generated and they are subsequently detected via the
interferometric measurement acting on the environment. We mention that this pro-
tocol can be applied to other experimental systems [57–63], where interferometric
techniques are already available. In Sect. 6.5, we discuss a concrete experimental
setup to realize our proposal. Finally, we conclude this Chapter with an outlook in
Sect. 6.6.
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Fig. 6.1 a A schematic figure of a mobile spinless quantum particle in the synthetic magnetic
environment. b The dynamical phase diagram. The system has zero, one, and two many-body
bound states depending on the impurity-boson scattering lengths aIB,↑↓. We use aBBn

1/3
B = 0.05

and mI/mB = 0.95 as appropriate for the 41K-39K mixture. c The dynamics of environment spins
in each regime of the dynamical phase diagram. Reproduced from Fig. 1 of Ref. [56]. Copyright
© 2018 by the American Physical Society

6.2 System: A Mobile Particle in a Synthetic Magnetic
Environment

To be concrete, we consider an impurity atom immersed in a weakly interacting two-
component BEC (see Fig. 6.1a). The impurity is dressed by spin-wave excitations
of a synthetic ferromagnetic environment and forms a magnetic polaron. The total
Hamiltonian is

Ĥ = ĤB + V̂IB + ĤI, (6.1)

where

ĤB=
∑

kσ

εkâ
†
kσâkσ+ gBB

2V

∑

kk′qσσ ′
â†k+qσâ

†
k′−qσ ′ âk′σ ′ âkσ (6.2)

is the bath Hamiltonian of the background BEC of density nB. The interaction
between the impurity and the environment is given by

V̂IB = 1

V

∑

kqσ

gIB,σ â
†
k+qσ âkσ e

iqR̂. (6.3)
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An operator âkσ (â†kσ ) annihilates (creates) an environmental boson with a wavenum-
ber k and a spin σ =↑,↓, R̂ is the position operator of the impurity, V is the volume
of the system, and we denote a dispersion relation as εk = �

2k2/(2mB) with mB

being the mass of surrounding bosons. The impurity Hamiltonian is ĤI = P̂2/(2mI)

with P̂ andmI being themomentumoperator and themass of the impurity.We assume
that the interaction term of the environment bosons (the second term in Eq. (6.2))
is spin-independent and thus characterized by a single parameter gBB as realized for
many atoms [64, 65].1 In contrast, the impurity-bath interaction is spin-dependent
and characterized by two parameters gIB,σ . They are related to the scattering lengths
aIB,σ via the Lippmann-Schwinger equation:

1

gIB,σ

= mred

2πaIB,σ

− 1

V

�∑

k

2mred

k2
, (6.4)

wheremred = mImB/(mI + mB) is the reduced mass. We note that these expressions
are fully regularized and themomentum cutoff� introduced in Eq. (6.4) can be taken
to infinity.

To realize a synthetic ferromagneticmedium,we start from a superposition state of
the pseudospin-1/2 BEC: |�BEC〉 ∝ (â†0↑ + â†0↓)NB |0〉, where NB is the total number

of environment particles. Since the bathHamiltonian ĤB possesses theSU(2) symme-
try, it does not cause decoherence of the spin dynamics. In contrast, the impurity-bath
interaction breaks this symmetry and leads to the dephasing of environment spins.

We can simplify the environment Hamiltonian following the standard procedure.
To take into account an initial macroscopic population of the environment bosons
in the k = 0 mode, we expand â0σ around 〈â0σ 〉 = √

NB/2. Here the factor of 1/2
accounts for the fact that the bosons are prepared in a superposition of ↑ and ↓ states.
We then diagonalize the bath Hamiltonian (6.2) using the Bogoliubov transforma-
tion:

âk,↑ = 1√
2

(
γ̂ s
k + ukγ̂

c
k − vkγ̂

†c
−k

)
, âk,↓ = 1√

2

(
−γ̂ s

k + ukγ̂
c
k − vkγ̂

†c
−k

)
,(6.5)

where the coefficients are given by

uk =
√

εk + gBBnB
2εck

+ 1

2
, vk =

√
εk + gBBnB

2εck
− 1

2
(6.6)

and the dispersion relation of the charge (i.e., phonon) excitations in the environment
is

εck = √εk(εk + 2gBBnB). (6.7)

1This condition can be relaxed. See Sect. 6.5 for discussions on a possible breaking of the SU(2)
symmetry in the environment interactions.
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The operators γ̂
c,s
k and γ̂

†c,s
k represent the creation and annihilation operators of the

charge and spin excitations and satisfy the commutation relations

[γ̂ ξ

k , γ̂
η

k′ ] = [γ̂ †ξ
k , γ̂

†η
k′ ] = 0, [γ̂ ξ

k , γ̂
†η
k′ ] = δξ,ηδk,k′ (ξ, η = s, c). (6.8)

The resulting expression for the total Hamiltonian Ĥ is

Ĥ = g+
IBnB + P̂2

2mI
+
∑

k

(
εck γ̂

†c
k γ̂ c

k + εsk γ̂
†s
k γ̂ s

k

)
+
√
nB
V

∑

k

[
g+
IBWk

(
γ̂ c
k +γ̂

†c
−k

)
+g−

IB

(
γ̂ s
k +γ̂

†s
−k

)]
e−ikR̂

+ g+
IB

2V

∑

k,k′

(
V (1)
kk′ γ̂

†c
k γ̂ c

k′ei(k−k′)R̂ + γ̂
†s
k γ̂ s

k′ei(k−k′)R̂ + V (2)
kk′ γ̂

†c
k γ̂

†c
k′ ei(k+k′)R̂ + H.c.

)

+ g−
IB

V

∑

k,k′

(
uk γ̂

†s
k′ γ̂ c

k e
i(k′−k)R̂ − vk γ̂

†s
k′ γ̂

†c
k ei(k

′+k)R̂ + H.c.
)

, (6.9)

where εsk = �
2k2/(2mB) is the dispersion relation of the spin-wave excitations in the

environment, g±
IB = (gIB,↑ ± gIB,↓)/2 are the average and difference of the impurity-

boson interaction parameters, Wk = √εk/ε
c
k and V (1)

kk′ ± V (2)
kk′ = (WkWk′)±1 are the

vertices.2 When g−
IB 	= 0, spin waves are generated due to the imbalance of the

impurity-boson couplings.
To simplify the problem, we go onto the comoving frame of the impurity via

ÛLLP = eiR̂P̂B , (6.10)

which is known as the Lee-Low-Pines (LLP) transformation [66]. Here, we introduce
the total momentum of the environment by P̂B =∑k k(γ̂

†c
k γ̂ c

k + γ̂
†s
k γ̂ s

k ) (we set � =
1). This leads to the transformed Hamiltonian Ĥ = Û †

LLP ĤÛLLP, which commutes
with the impurity momentum P̂. This can be inferred from the fact that the total
momentum P̂ + P̂B of the impurity and the environment is conserved in the original
frame while it is mapped to P̂ under the transformation ÛLLP:

Û †
LLP(P̂ + P̂B)ÛLLP = P̂. (6.11)

Thus, P̂ can be taken as a classical number P in the transformed frame and the
impurity is completely decoupled from the environmental degrees of freedom. The
explicit form of the transformed Hamiltonian Ĥ can be obtained as

2We note that the vertex functions that couple to the spin sector acquire an additional momentum
dependence when the SU(2) symmetry of the bath is broken.
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Ĥ = g+
IBnB + (P − P̂B)2

2mI
+
∑

k

(
εck γ̂

†c
k γ̂ c

k + εsk γ̂
†s
k γ̂ s

k

)
+
√

nB
V

∑

k

[
g+
IBWk

(
γ̂ c
k +γ̂

†c
−k

)
+g−

IB

(
γ̂ s
k +γ̂

†s
−k

)]

+ g+
IB
2V

∑

k,k′

(
V (1)
kk′ γ̂ †c

k γ̂ c
k′ + γ̂

†s
k γ̂ s

k′ + V (2)
kk′ γ̂ †c

k γ̂
†c
k′ + H.c.

)

+ g−
IB
V

∑

k,k′

(
uk γ̂

†s
k′ γ̂ c

k − vk γ̂
†s
k′ γ̂

†c
k + H.c.

)
. (6.12)

Hereafter, we consider the sector P = 0 in the transformed frame, i.e., we assume
that the total momentum of the impurity plus the environment in the original frame is
zero. We also assume that the initial state in the original frame is an eigenstate of the
momentum operator of the environment with the zero eigenvalue P̂B = 0. Since P̂B

is invariant under ÛLLP, we can take P̂B = 0 at the initial time also in the transformed
frame. Then, in the sector P = 0, one can show that P̂B in the transformed frame
remains to be zero in the course of the time evolution owing to the symmetry of
the Hamiltonian Ĥ under P̂B → −P̂B. Thus, the second term in the first line on the
right-hand side in Eq. (6.12) plays no role in our consideration. The second line in
Eq. (6.12) describes the contributions beyond the Fröhlich paradigm [67], leading to
new types of nonequilibrium polaron physics as detailed below.

6.3 Many-Body Interferometry Acting on the Environment

To directly probe the dynamics of the polaron cloud in real time, we propose employ-
ing the Ramsey interference acting on the environment atoms. We here outline its
specific protocol.

One starts from the environment atoms prepared in the ↑ state and then performs a
π/2 pulse, resulting in a superposition of ↑ and ↓ states as described in the previous
section. After letting the system evolve in time t , one again applies a π/2 pulse
and measures the number N↑ of environment atoms in the ↑ state, which directly
provides the number Ns(t) =∑k〈γ̂ †s

k γ̂ s
k 〉 of spin-wave excitations. Although we

treat the system as a single-impurity problem, our results are still valid for a system
with a finite density of impurities if, as realized in typical experimental setups, the
impurity density is so low that one can neglect impurity-impurity interactions. In
such a case, the interferometric signal Ns = N↑ linearly scales with the number of
impurities and can be enhanced by increasing the density of impurities. Moreover,
the signal Ns can easily exceed the number of impurities since a single impurity can
generate a multiple number of spin-wave excitations as shown below. The Ramsey
interferometry then allows one to make a precise measurement of the enhanced
signals Ns , thus enabling a direct observation of the polaron cloud. This has been
challenging to achieve in conventional setups [13, 20–31, 33–41] due to the difficulty
of detecting minuscule modifications of densities induced by phonon excitations.
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6.4 Out-of-Equilibrium Dynamics of the Magnetic Polaron

6.4.1 Time-Dependent Variational Principle

The polaron cloud exhibits distinct dynamics depending on the impurity-bath cou-
plings. To analyze out-of-equilibrium dynamics of the magnetic polaron, we use
the time-dependent variational approach [68]. We consider the following family of
variational states

|�(t)〉 = e
∑

k(α
c
k(t)γ̂

c
k+αs

k(t)γ̂
s
k−h.c.)|0〉, (6.13)

where |0〉 is the vacuum of the charge and spin-wave excitations and α
c,s
k (t) represent

their amplitudes. We remark that this variational state becomes exact in the limit of
mI → ∞.

The variational principle δ[〈�|i�∂t − Ĥ |�〉] = 0 provides the equations of
motion for α

c,s
k , which are the following coupled integral equations:

i α̇c
k = c

kαc
k − k · (P − PB[αc,s

k ])
mI

αc
k + g+

IB

(
∑

k′
V (1)
kk′ αc

k′ +
∑

k′
V (2)
kk′ α∗c

k′

)

+g−
IB

(
uk
∑

k′
αs
k′ − vk

∑

k′
α∗s
k′

)
+ g+

IB
√
nBWk, (6.14)

i α̇s
k = s

kαs
k − k · (P − PB[αc,s

k ])
mI

αs
k + g+

IB

∑

k′
αs
k′ + g−

IB

[
∑

k′

(
uk′ αc

k′ − vk′ α∗c
k′
)
]

+ g−
IB

√
nB, (6.15)

where 
s,c
k = �

2k2/(2mI) + ε
s,c
k and PB =∑k k(|αc

k|2 + |αs
k|2). As we mentioned

before, for our choice of the initial condition, we can set P = PB = 0 in the course of
time evolution. Thus, the above equations reduce to linear inhomogeneous equations
forαc,s

k , where the last terms on the right-hand sides of Eqs. (6.14) and (6.15) describe
driving forces.

To begin with, we analyze the equilibrium solution α
c,s
k which can be derived by

setting the left-hand sides of Eqs. (6.14) and (6.15) to be zero. From the conditions
that the real and imaginary parts of the right-hand sides of Eqs. (6.14) and (6.15)must
vanish independently, it follows that the imaginary parts of α

c,s
k are zero. Solving

the coupled integral equations for the remaining real parts of α
c,s
k , we obtain the

stationary solution:

αc
k = −

√
nBWk

c
k

g+
IB(1 + g+

IBB) − (g−
IB)2B

D
, αs

k = −
√
nB

s
k

g−
IB

D
. (6.16)

Here we introduce the coefficients as

D = (1 + g+
IBA)(1 + g+

IBB) − (g−
IB)2AB, A =

∑

k

W 2
k

c
k

, B =
∑

k

1

s
k
. (6.17)
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When there exists an imbalance in the impurity-bath couplings, i.e., g−
IB 	= 0, the

stationary solution for the spin part αs
k is nonvanishing and the magnetic polaron is

formed.
The energy of the equilibrium magnetic polaron is given by the expectation

value Empol = 〈�mpol|Ĥ |�mpol〉 with respect to the stationary state |�mpol〉 = exp[∑
k

(
αc
kγ̂

c
k + αs

kγ̂
s
k − h.c.

)] |0〉. Using the solution (6.16) and expressing the inter-
action strengths gIB,σ in terms of the scattering lengths aIB,σ by the Lippmann-
Schwinger equation (6.4), we obtain

Empol = 2πnB
mred
(
1/a+

IB − 1/ l0
) , (6.18)

where we define

a+
IB = aIB,↑ + aIB,↓

2
, l0 =

(
4π
∑

k

1

k2
− 2π

mred

∑

k

W 2
k

c
k

)−1

. (6.19)

6.4.2 Quantum Dynamics of the Environment

We now analyze out-of-equilibrium dynamics of the polaron cloud by integrating the
time-evolution equations (6.14) and (6.15). Figure6.2 plots the time evolutions of
Ns,c(t) at different impurity-bath couplings aIB,σ , which correspond to the regions
I, II, and III in which zero, one, and two bound states are present, respectively (see
Fig. 6.1b). As shown in panel I in Fig. 6.2, Nc(t) saturates while Ns(t) grows as∝ √

t
in the absence of bound states. Thus, the latter can easily surpass one, indicating that
the observable signal Ns = N↑ at a finite impurity density can exceed the number of
impurities. In contrast, the number of impurities strictly sets an upper bound on that
of detectable signals in the conventional approaches [8–18] that utilize the impurity
also as a probe. Our proposed approach using environment atoms as interferometric
probes thus allow one to enhance experimental signals of the impurities.

The
√
t growth of Ns(t) can be understood from the quadratic dispersion of the

magnon excitation as follows. For the sake of simplicity, let us neglect interactions
between different momentum modes and consider the simplified Hamiltonian where
different sectors ofmomentum k are decoupled: Ĥk = ωkγ̂

†
k γ̂k + Vk(γ̂k + γ̂

†
k ). Here

γ̂k denotes a spin or charge annihilation operator at momentum k and we assume
V−k = Vk. In the nonequilibrium interacting problem such as the one studied here,
the number of excitations nk in the mode k will in general oscillate. However, for
times longer than t > 1/ωk , one can give a simple scaling argument for the behavior
of nk. At such times, the occupation of excitations have a scaling 〈γ̂k〉 ∝ Vk/ωk and
thus nk ∝ (Vk/ωk)

2 as can be seen from an inspection of the equation of motion. Let
us then consider the total number of excitations at time t . We identify all modes k
satisfying ωkt > 1, i.e., the modes |k| > k∗ where k∗ is determined by ωk∗ t = 1, as
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Fig. 6.2 Time evolutions of the number of charge (blue dashed curves) and spin-
wave (red solid curves) excitations. We use the parameters (n1/3B aIB,↑, n1/3B aIB,↓) =
(−1,−10) in I, (3.5,−5) in II, and (3.5, 5) in III. The Fourier spectra of Ns(t) are plotted in
insets of panels II and III, where the black dotted lines correspond to the bound-state energies
obtained from Eq. (6.26) while their difference is shown as a green dashed line. Reproduced from
Fig. 2 of Ref. [56]. Copyright © 2018 by the American Physical Society

contributions to the excitations. Using the estimate nk ∝ (Vk/ωk)
2, we then integrate

over these modes to find the scaling of the spin-wave excitations

Ns(t) =
∫

d3k nsk ∝
∫ ∞

k∗
k2dk

1

k4
∝ √

t . (6.20)

Here we use the fact that for the spin sector Vk = const., and the magnon dispersion
relation scales as ωk ∝ k2, leading to k∗ ∝ 1/

√
t .

We note that the
√
t behavior remains observable also in the presence of a small

imbalance in the boson-boson scattering length (i.e., a broken SU(2) symmetry). In
this case, the magnon dispersion relation has a linear low-energy contribution and
the number of spin excitations will ultimately saturate. However, since the imbalance
in the scattering lengths is typically very small, we expect a large time window for
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which the
√
t behavior remains valid before saturation. Specifically, let t = t∗ be

the time scale at which k∗ (determined by ωk∗ t = 1) reaches a small value such that
the magnon dispersion becomes linear for k < k∗. Under this condition, the scaling
argument given in Eq. (6.20) remains valid as long as t < t∗. Importantly, because
a quadratic dispersion is relevant to collective excitations in various setups such as
dipolar or Rydberg gases [61–63], multi-component BEC [59, 60], and fermionic
gases [57, 58], our protocol to enhance the impurity signal via the interferometric
tools can also be realized in these systems.

6.4.3 Many-Body Bound States

As shown in panels II and III in Fig. 6.2, the presence of bound states induce the
oscillatory dynamics in the bath excitations. We can understand the single- and
multi-frequency oscillations as the formation and coupling of many-body bound
states, respectively. To give physical insights, let us analyze the bound states based
on the following variational state:

|�b(t)〉 =
∑

k

(
ψc

k(t)γ̂
†c
k + ψ s

k(t)γ̂
†s
k

)
|�mpol〉, (6.21)

which describes the magnetic polaron bound to a single spin and charge excitations.
The equations of motion for ψ

c,s
k are derived from the time-dependent variational

principle δ[〈�b|i∂t − Ĥ |�b〉] = 0. They are given by

iψ̇c
k = (Empol + c

k)ψ
c
k + g+

IB

∑

k′
V (1)
kk′ ψ

c
k′ + g−

IBuk
∑

k′
ψ s

k′ , (6.22)

iψ̇ s
k = (Empol + s

k)ψ
s
k + g+

IB

∑

k′
ψ s

k′ + g−
IB

∑

k′
uk′ψc

k′ . (6.23)

In order to find the eigenmodes of these equations, we assume the solutions of the
form ψ

c,s
k ∝ e−iωt which oscillate in time with frequency ω. Substituting this ansatz

into Eqs. (6.22) and (6.23), we obtain the equation

⎛

⎜⎜⎜⎜⎜⎝

1 − g+
IB
2 �w2 − g+

IB
2 � 0 −g−

IB�uw

− g+
IB
2 � 1 − g+

IB
2 �w−2 0 −g−

IB�uw−1

− g+
IB
2 �uw − g+

IB
2 �uw−1 1 −g−

IB�u2

0 0 −g−
IB�s 1 − g+

IB�s

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

∑
k Wkψ

c
k∑

k W
−1
k ψc

k∑
k ukψ

c
k∑

k ψ s
k

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ , (6.24)

where we define

�w±2 =
∑

k

W±2
k

ω − Empol − c
k

, � =
∑

k

1

ω − Empol − c
k

, �uw±1 =
∑

k

ukW
±1
k

ω − Empol − c
k

,
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�u2 =
∑

k

u2k
ω − Empol − c

k
, �s =

∑

k

1

ω − Empol − s
k

. (6.25)

Equation (6.24) has nontrivial solutions only if the determinant of the matrix on the
left-hand side vanishes. Expressing the interaction strengths gIB,σ in terms of the
scattering lengths aIB,σ via Eq. (6.4) and collecting the leading terms in the limit of
� → ∞, we obtain the equation

⎡

⎣a+
IB −

(
4π

�∑

k

1

k2
+ 2π

mred
�s

)−1⎤

⎦

⎡

⎣a+
IB −

(
4π

�∑

k

1

k2
+ 2π

mred

�w2 + �w−2

2

)−1⎤

⎦ = (a−
IB

)2
. (6.26)

Solving this equation for ω gives the bound-state energy ωbound. The number of
solutions determine the dynamical phase diagram in Fig. 6.1b.

In the two-particle problem with the impurity and a single bath atom, for each
positive scattering length aIB,σ , there exists a bound state whose energy is εdim =
�
2/(2mreda2IB,σ ). Thus, the corresponding diagram (cf. Fig. 6.1b) has four distinct

regions depending on signs of aIB,σ . In contrast, the many-body phase diagram in
Fig. 6.1b shows a unified region II as a consequence of the hybridization of the bound
states due to the exchange of spin-wave excitations.

The presence of a single bound state in this region II leads to the oscillatory
spin dynamics whose frequency agrees with the bound-state energy calculated from
Eq. (6.26) (see inset of panel II in Fig. 6.2). In region III, there are two bound states
that lead to the multi-frequency oscillations in the spin dynamics. As shown in inset
of panel III in Fig. 6.2, the coupling between the bound states induces shifts in the
oscillation frequencies from the bare bound-state energies obtained from Eq. (6.26)
(black dotted lines). The coupling also leads to a large peak lying at the difference
between two energies (green dashed line). Physically, we can understand these shifts
as a consequence of the magnon-mediated polaronic nonlinearity [69].

The coupling of the two bound states in region III weakens as we depart from the
strongly interacting regime. The oscillation frequencies in the spin dynamics then
eventually converge to the bare bound-state energies obtained from Eq. (6.26). To
clarify this point further, we show the spin dynamics for varying scattering lengths in
Fig. 6.3. When both states are weakly bound and close in energy (i.e., both scattering
lengths are large and take on similar values), the coupling between the bound states
can be strong enough to induce shifts in the oscillation frequencies as shown in
Fig. 6.3a. In this regime, a large peak placed at the difference of the two oscillatory
modes indicates a strong coupling of the two bound states. As the strength of one of
the scattering lengths is decreased, while keeping the other unchanged, the coupling
of the bound states becomesweak and the oscillation frequencies eventually converge
to the bare bound-state energies indicated by the dashed black lines (see Fig. 6.3b–
d). As the energy gap between both states increases, the gradual decoupling of the
two bound states can also be seen as a decrease in the peak height at the difference
between the two oscillatory mode energies.
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Fig. 6.3 Dynamics of environment spins and their Fourier spectra in the presence of two bound
states. One of the scattering lengths is set to be 1/(aIB,↑n1/3B ) = 4, while the other 1/(aIB,↓n1/3B ) is
varied over the range from 4.5 to 6 in (a)–(d). The black dashed lines in the Fourier spectra indicate
the eigenenergies ωbound of the magnetic bound states calculated from Eq. (6.26), while the green
dashed line shows the difference between these energies. We use the parameters aBBn

1/3
B = 0.05

and mI/mB = 0.95. Time and frequency are shown in units of mB/(�n2/3B ). Reproduced from
Fig. S1 of Ref. [56]. Copyright © 2018 by the American Physical Society

6.5 Experimental Implementation in Ultracold Atomic
Gases

Avariety of imbalancedmixtures of atomic gases allow one to experimentally imple-
ment our proposal. To be concrete, we here consider the 41K-39K mixture. Two
miscible states |↑〉 = |F = 1,mF = 1〉 and |↓〉 = |F = 1,mF = 0〉 of 41K can be
identified as the environment bosons and |i〉 = |F = 1,mF = 1〉 of 39K plays a role
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Fig. 6.4 The bound-state energyωbound (solid curve) obtained fromEq. (6.26) and the dimer energy
εdim = �

2/(2mreda2IB,↑) (dashed curve). The inset shows the spin dynamics at 1/(aIB,↑n1/3B ) = 2.

We choose the densities as nB = 1014 cm−3 and nI/nB = 0.1. We use the parameters aBBn
1/3
B =

0.05, 1/(aIB,↓n1/3B ) = 15 and mI/mB = 0.95 as realized in a 41K-39K mixture. Reproduced from
Fig. 3 of Ref. [56]. Copyright © 2018 by the American Physical Society

as the impurity.3 The impurity-bath interaction can be controlled via a Feshbach
resonance at 500 G. The bound-state energy ωbound obtained from Eq. (6.26) is plot-
ted in Fig. 6.4 in the vicinity of a Feshbach resonance. In this regime, aIB,↓ takes a
small, positive value while aIB,↑ takes a large positive one. The imbalanced scattering
lengths lead to a generation of large spin-wave excitations Ns(t) (see the inset of
Fig. 6.4). The shallow bound state induces a relatively slow oscillationwith∼10 kHz,
which can be measured by current techniques [17]. While the oscillation frequency
corresponds to a temperature scale T/kB�500 nK that has already been achieved in
several experiments [17, 71, 72], the predicted results should be accessible in higher
temperatures by performing local measurements [54] or by localizing the impurities
around the center of the system [17].

Wehave so far assumed that the scattering lengthaBB between environment bosons
is independent of the spin components σ =↑,↓. However, in practice, there may
exist a small imbalance in the boson-boson interactions. For example, identifying
the hyperfine states |F = 1,mF = 1〉 and |F = 1,mF = 0〉 as↑-and↓-state, respec-
tively, the imbalance in scattering lengths is∼0.4% for 41K [73] and∼0.5% for 87Rb
atoms [64]. In general, this weak symmetry breaking causes spin decoherence that
is additional to the one induced by the impurity. To estimate the size of such a con-
tribution, we consider the Hamiltonian of a two-component gas of host bosons in the
absence of the impurity

3As the background scattering length for |i〉 = |F = 1,mF = 1〉 of 39K is negative [70], this com-
ponent should be used as the minority atoms (i.e., impurities) in the mixture.
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ĤB =
∑

kσ

εkâ
†
kσâkσ + 1

2V

∑

k,k′,q

(
gBB↑↑â†k+q,↑â

†
k′−q,↑âk,↑âk′,↑

+ 2gBB↑↓â†k+q,↑â
†
k′−q,↓âk,↑âk′,↓+gBB↓↓â†k+q,↓â

†
k′−q,↓âk,↓âk′,↓

)
. (6.27)

Here gBBσσ ′ denotes the interaction strength between host bosons of spin component
σ and σ ′. Let us introduce imbalance parameters r1,2 by

gBB↑↑ = gBB↑↓(1 + r1), gBB↓↓ = gBB↑↓(1 + r2), gBB↑↓ ≡ gBB. (6.28)

Then, by following a similar procedure as outlined in Sect. 6.2, we can diagonalize
the Hamiltonian to obtain

ĤB =
∑

k

(
ε̃sk

ˆ̃γ †s
k

ˆ̃γ s
k + ε̃ck

ˆ̃γ †c
k

ˆ̃γ c
k

)
, (6.29)

where the dispersion relations are given by

ε̃
s,c
k =

√√√√√
(

k2

2mB

)2
+ gnBk2

2mB

⎡

⎣
(
1 + r1 + r2

2

)
∓
√

1 +
(
r1 − r2

2

)2
⎤

⎦. (6.30)

To ensure that the energies are real, we require that the parameters satisfy themiscible
condition:

(1 + r1)(1 + r2) > 1 ⇐⇒ gBB↑↑gBB↓↓ > g2BB↑↓. (6.31)

The operators ˆ̃γ s,c
k are related to âk,σ by the Bogoliubov transformation. As an

example, we show the expressions in the case of r1 = r2 = r :

⎧
⎪⎨

⎪⎩

âk↑ = 1√
2

(
ũsk

ˆ̃γ s
k − ṽs−k

ˆ̃γ †s
−k + ũck

ˆ̃γ c
k − ṽc−k

ˆ̃γ †c
−k

)
;

âk↓ = 1√
2

(
−ũsk

ˆ̃γ s
k + ṽs−k

ˆ̃γ †s
−k + ũck

ˆ̃γ c
k − ṽc−k

ˆ̃γ †c
−k

)
,

(6.32)

where

ũsk =
√√√√√√

k2
2mB

+ gnB
2 r

2
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2mB
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+ 1

2
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ṽsk = gnBr

2
√
2

⎡

⎣
(

k2

2mB

)2
+ gnBk2

2mB
r +
(

k2

2mB
+ gnB

2
r

)√(
k2

2mB

)2
+ gnBk2

2mB
r
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−1/2

. (6.33)
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For the sake of simplicity, let us focus on this particular case.4 In order to study how
the initially prepared superposition state |�BEC〉 ∝ (â†0↑ + â†0↓)NB |0〉 dephases due
to the imbalance in the spin-dependent boson-boson scattering lengths, we consider
the initial state in terms of the operators ˆ̃γ s,c

k :

|�BEC(0)〉 ∝ exp

⎡

⎣1
2

∑

k 	=0

(
ṽs−k

ũsk
ˆ̃γ †s
k

ˆ̃γ †s
−k + ṽc−k

ũck
ˆ̃γ †c
k

ˆ̃γ †c
−k

)⎤

⎦ |0〉γ , (6.34)

which satisfies âkσ |�BEC(0)〉 = 0 for k 	= 0, where |0〉γ denotes the vacuum of the
ˆ̃γ s,c
k operators. From the Hamiltonian (6.29), the time evolution of the quantum state

follows

|�BEC(t)〉 ∝ exp

⎡

⎣1

2

∑

k 	=0

(
ṽs−ke

−2i ε̃sk t

ũsk
ˆ̃γ †s
k

ˆ̃γ †s
−k + ṽc−ke

−2i ε̃ck t

ũck
ˆ̃γ †c
k

ˆ̃γ †c
−k

)⎤

⎦ |0〉γ . (6.35)

Then, by denoting 〈· · · 〉 as the expectation value with respect to |�BEC(t)〉, the time
evolution of the spin operator becomes

〈Ŝx 〉
NB

=
〈

1

2NB

∑

k

(
â†k,↑âk,↓ + â†k,↓âk,↑

)〉
(6.36)

= 1

2
− 1

nB

∫
d3k

(2π)3
2(ũsk)

2(ṽsk)
2(1 − cos(2ε̃skt)), (6.37)

where we used the expressions of the Bogoliubov transformations (6.32). The second
term in Eq. (6.37) represents the decoherence factor induced by the spin-dependent
internal interactions between the host bosons. The integral over (ũsk)

2 roughly equals
the number of excited particles, which is typically less than 1%, and ṽsk is on the
order of r . Thus, the decoherence factor can be estimated by the multiplication of
these two factors.

As an example, we assume an imbalance r = 0.01. Then the total decoherence
factor induced by the internal dynamics (6.37) is about <10−6 which is negligible
compared to the dephasing induced by the impurity. Figure6.5 shows the time evolu-
tion of the decoherence given by Eq. (6.37) for the imbalance parameters r = 0.01,
and 0.1. Our numerical findings support the above estimation of the decoherence
factor. In particular, the decoherence is still greatly suppressed even for an imbal-
ance in the boson-boson scattering lengths of about 10%. Thus, our predictions on
the magnetic polaron dynamics should be detectable also using a miscible pair of
hyperfine states of 23Na by identifying, for instance, |F = 1,mF = 1〉 as the ↑-state
and |F = 1,mF = 0〉 as the ↓-state, leading to an imbalance ∼8% [65]. For this
choice, 40K [13] will be the most promising candidate for the impurity atoms.

4A generalization to the case of r1 	= r2 is straightforward and leads to a similar conclusion.
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Fig. 6.5 Decoherence inducedbyan imbalance in the interactions between thedifferent components
of the environment bosons. The time evolutions are plotted for a r = 0.01 and b r = 0.1. The boson-
boson interaction is set to aBBn

1/3
B = 0.1 and we plot time in units of mB/(�n2/3B ). Reproduced

from Fig. S2 of Ref. [56]. Copyright © 2018 by the American Physical Society

6.6 Conclusions and Outlook

We have studied out-of-equilibrium dynamics of yet another paradigmatic open-
quantum system, a mobile spinless particle interacting with a many-particle envi-
ronment. In particular, we have shown that the formation of a polaron cloud can
be directly measured in real time by using the Ramsey interferometry acting on the
synthetic magnetic environment. We have demonstrated that the key signature of the
magnetic polaron is the generation of spin excitations in the environment atoms. In
the strong-coupling regime that is attainable in ultracold atomic systems (but not in
solid-state materials), we found that the many-body bound states can induce oscilla-
tory spin dynamics whose frequencies are characterized by the bound-state energies.
Finally, we discussed a concrete experimental implementation by the state-of-the-art
techniques in ultracold atoms.

Our work suggests several new directions. Firstly, combining our interferometric
approach with in-situ imaging techniques such as quantum gas microscopy [74–78],
one can directly observe the real-space structure of the polaron cloud. In particular,
it will be intriguing to reveal how the entanglement generated by the impurity-
environment coupling propagates in real space and time. Secondly, a generalization
of our approach to large-spin spinor BECs [79] presents an intriguing directionwhere
the formation of unconventional magnetic polarons is expected. Thirdly, while we
considered the physics close to a broad Feshbach resonance where range correc-
tions are negligible, it will be interesting to see how they affect the spin and charge
dynamics. Finally, it remains an important open question how the nature of magnetic
polarons changes as the density of impurities is increased to a degree at which a
magnon-mediated interaction between polarons [80] becomes important, potentially
leading to a superfluid instability of a fermionic polaron gas.
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Chapter 7
Conclusions and Outlook

Abstract We provide summary and outlooks of the studies presented in this the-
sis. The first part of this thesis deals with the influence from an external observer
on quantum many-body phenomena. We discuss several intriguing open questions
such as possible thermalization of integrable or many-body localized systems under
measurement or dissipation, and effects of quantum jumps on many-body dynam-
ics in long-time regimes. The second part is concerned with open quantum systems
correlated with an external many-body environment. We discuss how the versatile
variational approaches developed in this thesis can be applied to address important
open questions in various fields such as condensed matter physics and AMO physics.

Keywords Open quantum systems · Quantum many-body systems · Quantum
criticality · Nonequilibrium dynamics · Quantum impurity

In this Thesis, we have studied the fundamental aspects of many-body physics in
quantum systems open to an external world, with particular focus on their quantum
criticality, out-of-equilibrium dynamics, and entanglement structures. The interac-
tions with an external observer or environment fundamentally alter the underlying
physics and can give rise to new types of quantum many-body phenomena beyond
the conventional paradigm.

The first part of this Thesis is devoted to elucidating the influence of measure-
ment backaction on quantummany-body phenomena. First, by analyzing a universal
low-energy behavior of a one-dimensional many-body system, we have identified
that continuous observation leads to two possible types of relevant perturbations
to an effective Hamiltonian. Extending the Tomonaga-Luttinger liquid theory to
non-Hermitian cases, we have revealed new types of critical phenomena beyond
the conventional paradigm. Analyzing the Bose-Hubbard model under continuous
observation, we found that themeasurement backaction can shift the quantum critical
point. Our formalism and analyses can readily be extended to other types of mod-
els with different symmetries or dimensions. It will be intriguing to further search
previously unexplored phenomena that have no analogues in Hermitian many-body
systems. Second, we have studied how the measurement backaction qualitatively
alters out-of-equilibrium dynamics of many-particle systems. We have developed
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the notion of the full-counting dynamics, in which we found peculiar dynamics fun-
damentally different from the unconditional or unitary dynamics.Most strikingly, we
have revealed the propagation of correlations beyond the conventionalmaximal speed
limit known as the Lieb-Robinson bound at the expense of probabilistic nature of
quantummeasurement.Whilewe have focused on the solvable noninteractingmodel,
it is intriguing to explore similar unconventional phenomena also in interactingmany-
body systems. Employing the idea of the eigenstate-thermalization hypothesis, we
have also addressed the thermalization and heating in generic (nonintegrable) many-
body systems under continuous observation. We find that the nonunitary nature of
quantummeasurement leads to several unique features in thermalization mechanism
that are unseen in closed systems.We leave it as an interesting open question to eluci-
date thermalization of an integrable many-body system under measurement. Taking
the diffusive limit of continuous measurement, we have obtained the time-evolution
equation for indistinguishable particles under a weak spatial observation. We expect
that the derived equation should be useful to analyze the backaction from a variety
of minimally destructive in-situ measurements of quantum systems since specific
spatial profiles of measurement processes will disappear after taking the diffusive
limit of measurement.

The second part of this Thesis is devoted to studies of strongly correlated open
quantum systems, where the system-environment entanglement plays an essential
role. We have focused on a quantum impurity as their most fundamental paradigm,
and developed a versatile and efficient theoretical approach to studying its in- and
out-of-equilibrium physics. This approach has almost achieved the state-of-the-art
accuracy realized by the matrix-product-state ansatz with several orders of mag-
nitude fewer variational parameters. Moreover, it has allowed one to explore new
types of nonequilibrium phenomena that have been difficult to study through previ-
ous approaches. Our theoretical approach and, in particular, the newly constructed
canonical transformations can readily be generalized to other types of many-body
problems. We expect that they should play pivotal roles in the future studies of solv-
ing challenging problems in strongly correlated systems. We have also analyzed a
mobile spinless particle strongly coupled to themagnetic environment and found new
types of out-of-equilibrium dynamics in the regime that is not attainable in solid-state
materials. Our idea of employing the Ramsey interferometry for the environment to
reveal the impurity dynamics should have a broad range of applicability other than
the model we discuss. Together with quantum gas microscopy, this possibility will
open a way to reveal how the system-environment entanglement develops in real
time and space.

In short, this Thesis has been devoted to advancing our understanding of open and
out-of-equilibrium physics in quantum many-body systems. I hope that the research
presented in this Thesis will stimulate further studies in this new frontier.
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